
Hands-On Python
A Tutorial Introduction for Beginners

Python 3.1 Version

Dr. Andrew N. Harrington
Computer Science Department, Loyola University Chicago

© Released under the Creative commons Attribution-Noncommercial-Share
Alike 3.0 United States License

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Contents

Chapter 1. Beginning With Python 4
1.1. Context 4
1.2. The Python Interpreter and Idle, Part I 6
1.3. Whirlwind Introduction To Types and Functions 11
1.4. Integer Arithmetic 12
1.5. Strings, Part I 14
1.6. Variables and Assignment 15
1.7. Print Function, Part I 16
1.8. Strings Part II 17
1.9. The Idle Editor and Execution 17
1.10. Input and Output 19
1.11. Defining Functions of your Own 23
1.12. Dictionaries 31
1.13. Loops and Sequences 35
1.14. Decimals, Floats, and Floating Point Arithmetic 45
1.15. Summary 47

Chapter 2. Objects and Methods 53
2.1. Strings, Part III 53
2.2. More Classes and Methods 59
2.3. Mad Libs Revisited 61
2.4. Graphics 66
2.5. Files 88
2.6. Summary 90

Chapter 3. More On Flow of Control 93
3.1. If Statements 93
3.2. Loops and Tuples 105
3.3. While Statements 109
3.4. Arbitrary Types Treated As Boolean 120
3.5. Further Topics to Consider 122
3.6. Summary 123

Chapter 4. Dynamic Web Pages 126
4.1. Web page Basics 126
4.2. Composing Web Pages in Python 128
4.3. CGI - Dynamic Web Pages 131
4.4. Summary 138

3

CHAPTER 1

Beginning With Python

1.1. Context

You have probablry used computers to do all sorts of useful and interesting things. In each application,
the computer responds in different ways to your input, from the keyboard, mouse or a file. Still the underlying
operations are determined by the design of the program you are given. In this set of tutorials you will learn
to write your own computer programs, so you can give the computer instructions to react in the way you
want.

1.1.1. Low-Level and High-Level Computer Operations. First let us place Python programming
in the context of the computer hardware. At the most fundamental level in the computer there are instruc-
tions built into the hardware. These are very simple instructions, peculiar to the hardware of your particular
type of computer. The instructions are designed to be simple for the hardware to execute, not for humans to
follow. The earliest programming was done with such instructions. If was difficult and error-prone. A major
advance was the development of higher-level languages and translators for them. Higher-level languages
allow computer programmers to write instructions in a format that is easier for humans to understand. For
example

z = x+y

is an instruction in many high-level languages that means something like:
(1) Access the value stored at a location labeled x
(2) Calculate the sum of this value and the value stored at a location labeled y
(3) Store the result in a location labeled z.

No computer understands the high-level instruction directly; it is not in machine language. A special program
must first translate instructions like this one into machine language. This one high-level instruction might be
translated into a sequence of three machine language instructions corresponding to the three step description
above:

0000010010000001
0000000010000010
0000010110000011

Obviously high-level languages were a great advance in clarity!
If you follow a broad introduction to computing, you will learn more about the layers that connect

low-level digital computer circuits to high-level languages.

1.1.2. Why Python. There are many high-level languages. The language you will be learning is
Python. Python is one of the easiest languages to learn and use, while at the same time being very powerful:
It is used by many of the most highly productive professional programmers. A few of the places that use
Python extensively are Google, the New York Stock Exchange, Industrial Light and Magic, Also Python
is a free language! If you have your own computer, you can download it from the Internet....

1.1.3. Obtaining Python for Your Computer. If you are not sure whether your computer already
has Python, continue to Section 1.2.2, and give it a try. If it works, you are all set.

If you do need a copy of Python, go to the Downloads page linked to http://www.python.org. Be
careful to choose the version for your operating system and hardware. Chosse a stable version, 3.1 or later.
Do not choose a version 2.X, which is incompatible. (Version 2.6 is described in an older version of this
tutorial.)

4

1.1. CONTEXT 5

Windows You just need to execute the installer, and interact enough to agree to all the default choices.
Python works in Windows as well as on Apples and in the free operating system Linux.

OS X Double-click on the installer. Find and run the MacPython.mpkg that is inside. Follow the
defaults for installation.

Linux Python is generally installed, though Idle is not always installed. Look for something like ’idle-
python’ (the name in the Ubuntu distribution).

1.1.4. Philosophy and Implementation of the Hands-On Python Tutorials. Although Python
is a high-level language, it is not English or some other natural human language. The Python translator does
not understand “add the numbers two and three”. Python is a formal language with its own specific rules and
formats, which these tutorials will introduce gradually, at a pace intended for a beginner. These tutorials
are also appropriate for beginners because they gradually introduce fundamental logical programming skills.
Learning these skills will allow you to much more easily program in other languages besides Python. Some
of the skills you will learn are

• breaking down problems into manageable parts
• building up creative solutions
• making sure the solutions are clear for humans
• making sure the solutions also work correctly on the computer.

Guiding Principals for the Hands-on Python Tutorials:

• The best way to learn is by active participation. Information is principally introduced in small
quantities, where your active participation, experiencing Python, is assumed. In many place you
will only be able to see what Python does by doing it yourself (in a hands-on fashion). The tutorial
will often not show. Among the most common and important words in the tutorial are “Try this:”

• Other requests are for more creative responses. Sometimes there are Hints, which end up as hy-
perlinks in the web page version, and footnote references in the pdf version. Both formats should
encourage you to think actively about your response first before looking up the hint.

The tutorials also provide labeled exercises, for further practice, without immediate answers pro-
vided. The exercises are labeled at three levels
*: Immediate reinforcement of basic ideas – preferably do on your first pass.
**: Important and more substantial – be sure you can end up doing these.
***: Most creative

• Information is introduced in an order that gives you what you need as soon as possible. The
information is presented in context. Complexity and intricacy that is not immediately needed is
delayed until later, when you are more experienced.

• In many places there are complications that are important in the beginning, because there is a
common error caused by a slight misuse of the current topic. If such a common error is likely to
make no sense and slow you down, more information is given to allow you to head off or easily
react to such an error.

Although this approach is an effective way to introduce material, it is not so good for reference. Referencing
is addressed in several ways:

• An extensive Table of Contents
• Easy jumping to chosen text in a browser like Firefox
• Cross references to sections that elaborate on an introductory section
• Concise chapter summaries, grouping logically related items, even if that does not match the order
of introduction.

Some people learn better visually and verbally from the very beginning. Some parts of the tutorial will also
have links to corresponding flash video segments. Many people will find reading faster and more effective,
but the video segments may be particularly useful where a computer interface can be not only explained but
actually demonstrated. The links to such segments will be labeled. They will need a broadband link or a
CD (not yet generated).

1.2. THE PYTHON INTERPRETER AND IDLE, PART I 6

In the Firefox browser, the incremental find is excellent, and particularly useful with the single web page
version of the tutorials. (It only fails to search footnotes.) It is particularly easy to jump through different
sections in a form like 1.2.4.

1.2. The Python Interpreter and Idle, Part I

1.2.1. Your Python Folder and Python Examples.
First you need to set up a location to store your work and the example programs from this tutorial. If

you are on a Windows computer, follow just one of the three choices below to find an appropriate place to
download the example archive examples.zip, and then follow the later instructions to unzip the archive.

Your Own Computer: If you are at your own computer, you can put the folder for your Python
programs most anywhere you like. For Chapter 4, it will be important that none of the directories
leading down to your Python folder contain any blanks in them. In particular in Windows, “My
Documents” is a bad location. In Windows you can create a directory in C: drive, like C:\myPython.
You should have installed Python to continue.

Your Flash Drive: If you do not have your own computer, or you want to have your materials easily
travel back and forth between the lab and home, you will need a flash drive.

Plug your flash drive into the computer USB port.

On the computers in the Loyola lab DH 342, you can attach to the end of a cable that reaches close
to the keyboard. In DH 339, there are USB ports on the monitor. Please Note: Flash drives are
easy for me to forget and leave in the computer. I have lost a few this way. If you are as forgetful as
I, you might consider a string from the flash drive to something you will not forget to take with you.

Open My Computer (on the desktop) to see where the flash drive is mounted, and open that
drive.

Temporary: If you (temporarily) do not have a flash drive and you are at a Loyola lab computer:
Open My Computer from the desktop, and then select drive D:. Create a folder on drive D: with
your name or initials to make it easy for you to save and remove things. Change to that folder.
You should place the examples archive here. You will need to save your work somehow before you
log off of the computer. You may want to email individual files to yourself, or rezip the examples
folder and send just the one archive file to yourself each time until you remember a flash drive!

In Windows, after you have chosen a location for the archive, examples.zip, download it by right clicking on
http://cs.luc.edu/anh/python/hands-on/3.0/examples.zip and selecting “Save As” or the equivalent
on your browser and then navigate to save the archive to the chosen location on your computer. Note the
the examples, like this version of the tutorial, are for Python 3.1. There were major changes to Python in
version 3.0, making it incompatible with earlier versions.

If you are using Python version 2.5 or 2.6, you should continue with the older version of the tutorial.
Go to http://cs.luc.edu/~anh/python/hands-on and find the links to the proper version of the tutorial
and examples.

Once you have the archive, open a file browser window for that directory, right click on examples.zip,
select Extract All. This will create the folder examples. End up with a file browser window showing the
contents of the examples folder. This will be your Python folder in later discussion.

Caution 1: On Windows, files in a zip archive can be viewed while they are still in the zip archive.
Modifying and adding files is not so transparent. Be sure that you unzip the archive and work from the
regular directory that holds the resulting unzipped files.

Caution 2: Make sure that all the directories leading down to your Python examples directory do not
include any spaces in them. This will be important in Chapter 4 for the local webserver. In particular, that
means you should not place your folder under “My Documents”. A directory like C:\hands-on or C:\python
would be fine.

You also have the option of downloading
• An archive containing the web version of the tutorial http://cs.luc.edu/anh/python/hands-on/
3.0/handsonHtml.zip for local viewing, without the Internet. Download it and unzip as with the

1.2. THE PYTHON INTERPRETER AND IDLE, PART I 7

examples. The local file to open in your browser in in handsonHtml folder you unzipped and the
main web page file to open is called handson.html.

• The PDF version of the tutorial for printing http://cs.luc.edu/anh/python/hands-on/3.0/
handson.pdf.

The disadvantage of a local copy is that the tutorial may be updated online after you get your download.
The change log file http://www.cs.luc.edu/~anh/python/hands-on/changelog.html will show when the
latest update was made and a summary of any major changes.

1.2.2. Running A Sample Program.
This section assumes Python, version at least 3.1, is already on your computer. Windows does not come

with Python. (To load Python see Section 1.1.2) On a Mac or Linux computer enough of Python comes
installed to be able to run the sample program.

If you are in a Windows lab with Python 3.1 installed, but not set up as the default version, see the
footnote.1

Before getting to the individual details of Python, you will run a simple text-based sample program.
Find madlib.py in your Python folder (Section 1.2.1).

Options for running the program:
• In Windows, you can display your folder contents, and double click on madlib.py to start the
program.

• In Linux or on a Mac you can open a terminal window, change into your python directory, and
enter the command
python madlib.py

The latter approach only works in a Windows command window if your operating system execution path is
set up to find Python.

In whatever manner you start the program, run it, responding to the prompts on the screen. Be sure to
press the enter key at the end of each response requested from you.

Try the program a second time and make different responses.

1.2.3. A Sample Program, Explained. If you want to get right to the detailed explanations of
writing your own Python, you can skip to the next section 1.2.4. If you would like an overview of a working
program, even if all the explanations do not make total sense yet, read on.

Here is the text of the madlib.py program, followed by line-by-line brief explanations. Do not worry if
you not totally understand the explanations! Try to get the gist now and the details later. The numbers on
the right are not part of the program file. They are added for reference in the comments below.

""" 1
String Substitution for a Mad Lib 2
Adapted from code by Kirby Urner 3
""" 4

5
storyFormat = """ 6
Once upon a time, deep in an ancient jungle, 7
there lived a {animal}. This {animal} 8
liked to eat {food}, but the jungle had 9
very little {food} to offer. One day, an 10
explorer found the {animal} and discovered 11
it liked {food}. The explorer took the 12
{animal} back to {city}, where it could 13
eat as much {food} as it wanted. However, 14
the {animal} became homesick, so the 15

1If an earlier version of Python is the default in your lab (for instance Python 2,6), you can open the examples folder and
double-click on the program default31.cmd. This will make Python 3.1 be the default version until you log out or reboot. This
is only actually important when you run a Python program directly from a Windows folder. You will shortly see how to start
a program from inside the Idle interactive environment, and as long as you run all your programs inside that environment, the
system default version is not important.

1.2. THE PYTHON INTERPRETER AND IDLE, PART I 8

explorer brought it back to the jungle, 16
leaving a large supply of {food}. 17

18
The End 19
""" 20

21
def tellStory(): 22

userPicks = dict() 23
addPick(’animal’, userPicks) 24
addPick(’food’, userPicks) 25
addPick(’city’, userPicks) 26
story = storyFormat.format(**userPicks) 27
print(story) 28

29
def addPick(cue, dictionary): 30

’’’Prompt for a user response using the cue string, 31
and place the cue-response pair in the dictionary. 32
’’’ 33
prompt = ’Enter an example for ’ + cue + ’: ’ 34
response = input(prompt) 35
dictionary[cue] = response 36

37
tellStory() 38
input("Press Enter to end the program.") 39

Line By Line Explanation
""" 1
String Substitution for a Mad Lib 2
Adapted from code by Kirby Urner 3
""" 4

1-4 There is multi-line text enclosed in triple quotes. Quoted text is called a string. A string at the
very beginning of a file like this is documentation for the file.

5,21,29,37 Blank lines are included for human readability to separate logical parts. The computer ignores
the blank lines.

storyFormat = """ 6
Once upon a time, deep in an ancient jungle, 7
there lived a {animal}. This {animal} 8
liked to eat {food}, but the jungle had 9
very little {food} to offer. One day, an 10
explorer found the {animal} and discovered 11
it liked {food}. The explorer took the 12
{animal} back to {city}, where it could 13
eat as much {food} as it wanted. However, 14
the {animal} became homesick, so the 15
explorer brought it back to the jungle, 16
leaving a large supply of {food}. 17

18
The End 19
""" 20

6 The equal sign tells the computer that this is an assignment statement. The computer will now
associate the value of the expression between the triple quotes, a multi-line string, with the name
on the left, storyFormat.

7-20 These lines contain the body of the string and the ending triple quotes. This storyFormat string
contains some special symbols making it a format string, unlike the string in lines 1-4. The

1.2. THE PYTHON INTERPRETER AND IDLE, PART I 9

storyFormat string will be used later to provide a format into which substitutions are made.
The parts of the string enclosed in braces are places a substitute string will be inserted later. The
substituted string will come from a custom dictionary that will contain the user’s definitions of
these words. The words in the braces: {animal}, {food}, {city}, indicate that "animal", "food",
and "city" are words in a dictionary. This custom dictionary will be created in the program and
contain the user’s definitions of these words. These user’s definitions will be substituted later in
the format string where each {...} is currently.

def tellStory(): 22
userPicks = dict() 23
addPick(’animal’, userPicks) 24
addPick(’food’, userPicks) 25
addPick(’city’, userPicks) 26
story = storyFormat.format(**userPicks) 27
print(story) 28

22 def is short for def inition. This line is the heading of a def inition, which makes the name
tellStory becomes def ined as a short way to refer to the sequence of statements that start
indented on line 23, and continue through line 27.

23 The equal sign tells the computer that this is another assignment statement. The computer will
now associate the name userPicks with a new empty dictionary created by the Python code
dict().

24-26 addPick is the name for a sequence of instructions defined on lines 29-31 for adding another
definition to a dictionary, based on the user’s input. The result of these three lines is to add
definitions for each of the three words ’animal’, ’food’, and ’city’ to the dictionary called userPicks.

27 Assign the name story to a string formed by substituting into storyFormat using definitions
from the dictionary userPicks, to give the user’s customized story.

28 This is where all the work becomes visible: Print the story string to the screen.
def addPick(cue, dictionary): 30

’’’Prompt for a user response using the cue string, 31
and place the cue-response pair in the dictionary. 32
’’’ 33
prompt = ’Enter an example for ’ + cue + ’: ’ 34
response = input(prompt) 35
dictionary[cue] = response 36

30 This line is the heading of a definition, which gives the name addPick as a short way to refer to
the sequence of statements indented on line 34-36. The name addPick is followed by two words
in parenthesis, cue and dictionary. These two words are associated with an actual cue word
and dictionary given when this definition is invoked in lines 24-26.

31-33 A documentation comment for the addPick definition.
34 The plus sign here is used to concatenate parts of the string assigned to the name prompt. The

current value of cue is placed into the string.
35 The right-hand-side of this equal sign causes an interaction with the user. The prompt string

is printed to the computer screen, and the computer waits for the user to enter a line of text.
That line of text then becomes a string inside the program. This string is assigned to the name
response.

36 The left-hand-side of the equal sign is a reference to the definition of the cue word in the dictionary.
The whole line ends up making the definition of the current cue word become the response typed
by the user.

tellStory() 38
input("Press Enter to end the program.") 39

38 The definition of tellStory above does not make the computer do anything besides remember
what the instruction tellStorymeans. It is only in this line, with the name, tellStory, followed
by parentheses, that the whole sequence of remembered instructions are actually carried out.

1.2. THE PYTHON INTERPRETER AND IDLE, PART I 10

39 This line is only here to accommodate running the program in Windows by double clicking on its
file icon. Without this line, the story would be displayed and then the program would end, and
Windows would make it immediately disappear from the screen! This line forces the program to
continue being displayed until there is another response from the user, and meanwhile the user
may look at the output from tellStory.

1.2.4. Starting Idle.
The program that translates Python instructions and then executes them is the Python interpreter.
This interpreter is embedded in a number of larger programs that make it particularly easy to develop

Python programs. Such a programming environment is Idle, and it is a part of the standard distribution of
Python.

Read the section that follows for your operating system:

Windows (Assuming you already have Python installed.) Display your Python folder. You should see icon
for Idle31Shortcut (and maybe a similar icon with a number larger than 31 - ignore any other
unless you know you are using that version of Python). Double click on the appropriate shortcut,
and an Idle window should appear. After this the instructions are the same in any operating
environment. It is important to start Idle through these in several circumstances. It is best if
it you make it a habit to use this shortcut. For example the alternative of opening an existing
Python program in Windows XP or Vista from Open With Idle in the context menu looks like it
works at first but then fails miserably but inexplicably when you try to run a graphics program.

Mac OS X the new version of Python and Idle should be in a folder called MacPython 3.1, inside the
Applications folder. It is best if you can open a terminal window, change into your Python folder
from Section 1.2.1, and enter the command

idle
If the command is not recognized, you may need to include the full path to the idle program.

Linux The approach depends on the installation. In Ubuntu, you should fine idle in the Programming
section of the Applications menu. As with OS X above, you are better starting idle from a
terminal, with the current directory being your Python folder.

1.2.5. Windows in Idle. Idle has several parts you may choose to display, each with its own window.
Depending on the configuration, Idle can start up showing either of two windows, an Edit Window or a
Python Shell Window. You are likely to first see an Edit window, whose top left corner looks something like
in Windows:

For more on the Edit Window, see Section1.9.
If you see this Edit Window with its Run menu on top, go to the Run menu and choose PYTHON

SHELL to open a Python Shell Window for now. Then you may close the Edit Window.
Either initially, or after explicitly opening it, you should now see the Python Shell window, with a menu

like the following, though the text may be slightly different:

1.3. WHIRLWIND INTRODUCTION TO TYPES AND FUNCTIONS 11

Look at the Python Shell. ...
In the Shell the last line should look like

>�>�>
The >�>�> is the prompt, telling you Idle is waiting for you to type something. Continuing on the same line
enter

6+3
Be sure to end with the Enter key. After the Shell responds, you should see something like

>�>�> 6+3
9
>�>�>

The shell evaluates the line you entered, and prints the result. You see Python does arithmetic. At the
end you see a further prompt >�>�> where you can enter your next line.... The result line, showing 9, that is
produced by the computer, does not start with “>�>�>”.

1.3. Whirlwind Introduction To Types and Functions

Python directly recognizes a variety of types of data. Here are a few:
Numbers: 3, 6, -7, 1.25
Character strings: ’hello’, ’The answer is: ’
Lists of objects of any type: [1, 2, 3, 4], [’yes’, ’no’, ’maybe’]
A special datum meaning nothing: None
Python has large collection of built-in functions that operate on different kinds of data to produce all kinds
of results. To make a function do its action, parentheses are required. These parentheses surround the
parameter or parameters, as in a function in algebra class.

The general syntax to execute a function is
functionName (parameters)

One function is called type, and it returns the type of any object. The Python Shell will evaluate functions.
In the Shell the last line should look like

>�>�>
Continuing on the same line enter

1.4. INTEGER ARITHMETIC 12

type(7)

Always remember to end with the Enter key. After the Shell responds, you should see something like
>�>�> type(7)
<class ’int’>
>�>�>

In the result, int is short for integer. The work class is basically a synonym for type in Python. At the end
you see a further prompt where you can enter your next line....

For the rest of this section, at the >�>�> prompt in the Python Shell, individually enter each line below
that is set off in typewriter font. So next enter

type(1.25)

Note the name in the last result is float, not real or decimal, coming from the term “floating point”, for
reasons that will be explained later, in Section 1.14.1. Enter

type(’hello’)

In your last result you see another abbreviation: str rather than string. Enter
type([1, 2, 3])

Strings and lists are both sequences of parts (characters or elements). We can find the length of that sequence
with another function with the abbreviated name len. Try both of the following, separately, in the Shell:

len([2, 4, 6])
len(’abcd’)

Some functions have no parameters, so nothing goes between the parentheses. For example, some types
serve as no-parameter functions to create a simple value of their type. Try

list()

You see the way an empty list is displayed.
Functions may also take more than one parameter. Try

max(5, 11, 2)

Above, max is short for maximum.
Some of the names of types serve as conversion functions (where there is an obvious meaning for the

conversion). Try each of the following, one at a time, in the Shell:
str(23)
int(’125’)

An often handy Shell feature: an earlier Shell line may to copied and edited by clicking anywhere in the
previously displayed line and then pressing Enter. For instance you should have entered several lines
starting with len. click on any one, press Enter, and edit the line for a different test.

1.4. Integer Arithmetic

1.4.1. Addition and Subtraction. We start with the integers and integer arithmetic, not because
arithmetic is exciting, but because the symbolism should be mostly familiar. Of course arithmetic is impor-
tant in many cases, but Python is probably more often used to manipulate text and other sorts of data, as
in the sample program in Section 1.2.2.

Python understands numbers and standard arithmetic. For the whole section on integer arithmetic,
where you see a set-off line in typewriter font, type individual lines at the >�>�> prompt in the Python
Shell. Press Enter after each line to get Python to respond:

77
2 + 3
5 - 7

Python should evaluate and print back the value of each expression. Of course the first one does not require
any calculation. It appears the shell just echoes back what you printed. Do note that the line with the value
produced by the shell does not start with >�>�> and appears at the left margin. Hence you can distinguish
what you type (after the “>�>�>” prompt) from what the computer responds.

1.4. INTEGER ARITHMETIC 13

The Python Shell is an interactive interpreter. As you can see, after you press Enter, it is evaluating
the expression you typed in, and then printing the result automatically. This is a very handy environment
to check out simple Python syntax and get instant feedback. For more elaborate programs that you want
to save, we will switch to an Editor Window later.

1.4.2. Multiplication, Parentheses, and Precedence. Try in the Shell:
2 x 3

You should get your first syntax error. The ’x’ should have become highlighted, indicating the location where
the Python interpreter discovered that it cannot understand you: Python does not use x for multiplication
as you may have done in grade school. The x can be confused with the use of x as a variable (more on that
later). Instead the symbol for multiplication is an asterisk ’*’. Enter each of the following. You may include
spaces or not. The Python interpreter can figure out what you mean either way. Try in the Shell:

2*5
2 + 3 * 4

If you expected the last answer to be 20, think again: Python uses the normal precedence of arithmetic oper-
ations: Multiplications and divisions are done before addition and subtraction, unless there are parentheses.
Try

(2+3)*4
2 * (4 - 1)

Now try the following in the Shell, exactly as written, followed by Enter, with no closing parenthesis:
5 * (2 + 3

Look carefully. There is no answer given at the left margin of the next line and no prompt >�>�> to start a
new expression. If you are using Idle, the cursor has gone to the next line and has only indented slightly.
Python is waiting for you to finish your expression. It is smart enough to know that opening parentheses
are always followed by the same number of closing parentheses. The cursor is on a continuation line. Type
just the matching close-parenthesis and Enter,

)
and you should finally see the expression evaluated. (In some versions of the Python interpreter, the inter-
preter puts ’...’ at the beginning of a continuation line, rather than just indenting.)

Negation also works. Try in the Shell:
-(2 + 3)

1.4.3. Division and Remainders. If you think about it, you learned several ways to do division.
Eventually you learned how to do division resulting is a decimal. Try in the Shell:

5/2
14/4

As you saw in the previous section, numbers with decimal points in them are of type float in Python. They
are discussed more in Section 1.14.1.

In the earliest grades you would say “14 divided by 4 is 3 with a remainder of 2”. The problem here is
that the answer is in two parts, the integer quotient 3 and the remainder 2, and neither of these results is the
same as the decimal result. Python has separate operations to generate each part. Python uses the doubled
division symbol // for the operation that produces just the integer quotient, and introduces the symbol %
for the operation of finding the remainder. Try each in the Shell

14/4
14//4
14%4

Now predict and then try each of
23//5
23%5
20%5
6//8
6%8

1.5. STRINGS, PART I 14

Finding remainders will prove more useful than you might think in the future!

1.5. Strings, Part I

Enough with numbers for a while. Strings of characters are another important type in Python.

1.5.1. String Delimiters, Part I. A string in Python is a sequence of characters. For Python to
recognize a sequence of characters, like hello, as a string, it must be enclosed in quotes to delimit the string.

For this whole section on strings, continue trying each set-off line of code in the Shell. Try
"hello"

Note that the interpreter gives back the string with single quotes. Python does not care what system you
use. Try

’Hi!’

Having the choice of delimiters can be handy.

Exercise 1.5.1.1. * Figure out how to give Python the string containing the text: I’m happy. Try it.
If you got an error, try it with another type of quotes, and figure out why that one works and not the first.

There are many variations on delimiting strings and embedding special symbols. We will consider more
ways later in Section 1.8.

A string can have any number of characters in it, including 0. The empty string is ’’ (two quote
characters with nothing between them).

Strings are a new Python type. Try
type(’dog’)
type(’7’)
type(7)

The last two lines show how easily you can get confused! Strings can include any characters, including digits.
Quotes turn even digits into strings. This will have consequences in the next section....

1.5.2. String Concatenation. Strings also have operation symbols. Try in the Shell (noting the space
after very):

’very ’ + ’hot’

The plus operation with strings means concatenate the strings. Python looks at the type of operands before
deciding what operation is associated with the +.

Think of the relation of addition and multiplication of integers, and then guess the meaning of
3*’very ’ + ’hot’

Were you right? The ability to repeat yourself easily can be handy.

Exercise 1.5.2.1. * Figure out a compact way to get Python to make the string, “YesYesYesYesYes”,
and try it. How about “MaybeMaybeMaybeYesYesYesYesYes” ? Hint: 2

Predict the following and then test. Remember the last section on types:
7+2
’7’+’2’

Python checks the types and interprets the plus symbol based on the type. Try
’7’+2

With mixed string and int types, Python sees an ambiguous expression, and does not guess which you want
– it just gives an error! 3

2Hint for the second one: use two *’s and a +.
3Be careful if you are a Java programmer! This is unlike Java, where the 2 would be automatically converted to ’2’ so the

concatenation would make sense.

1.6. VARIABLES AND ASSIGNMENT 15

1.6. Variables and Assignment

Each set-off line in this section should be tried in the Shell.
Try

width = 10

Nothing is displayed by the interpreter after this entry, so it is not clear anything happened. Something has
happened. This is an assignment statement, with a variable, width, on the left. A variable is a name for a
value. An assignment statement associates a variable name on the left of the equal sign with the value of an
expression calculated from the right of the equal sign. Enter

width

Once a variable is assigned a value, the variable can be used in place of that value. The response to the
expression width is the same as if its value had been entered.

The interpreter does not print a value after an assignment statement because the value of the expression
on the right is not lost. It can be recovered if you like, by entering the variable name and we did above.

Try each of the following lines:
height = 12
area = width * height
area

The equal sign is an unfortunate choice of symbol for assignment, since Python’s usage is not the mathemati-
cal usage of the equal sign. If the symbol←had appeared on keyboards in the early 1990’s, it would probably
have been used for assignment instead of =, emphasizing the asymmetry of assignment. In mathematics an
equation is an assertion that both sides of the equal sign are already, in fact, equal. A Python assignment
statement forces the variable on the left hand side to become associated with the value of the expression on
the right side. The difference from the mathematical usage can be illustrated. Try:

10 = width

so this is not equivalent in Python to width = 10. The left hand side must be a variable, to which the
assignment is made. Try

width = width + 5

This is, of course, nonsensical as mathematics, but it makes perfectly good sense as an assignment, with the
right-hand side calculated first. Can you figure out the value that is now associated with width? Check by
entering

width

In the assignment statement, the expression on the right is evaluated first. At that point width was associated
with its original value 10, so width + 5 had the value of 10 + 5 which is 15. That value was then assigned
to the variable on the left (width again) to give it a new value. We will modify the value of variables in a
similar way routinely.

Assignment and variables work equally well with strings. Try:
first = ’Sue’
last = ’Wong’
name = first + ’ ’ + last
name

Try entering:
first = fred

Note the different form of the error message. The earlier errors in these tutorials were syntax errors: errors in
translation of the instruction. In this last case the syntax was legal, so the interpreter went on to execute the
instruction. Only then did it find the error described. There are no quotes around fred, so the interpreter
assumed fred was an identifier, but the name fred was not defined at the time the line was executed.

It is easy to forget quotes where you need them and put them around a variable name that should not
have them!

Try in the Shell:

1.7. PRINT FUNCTION, PART I 16

fred = ’Frederick’
first = fred
first

Now fred, without the quotes, makes sense.
There are more subtleties to assignment and the idea of a variable being a “name for” a value, but we

will worry about them later, in Section 2.4.6. They do not come up if our variables are just numbers and
strings.

Autocompletion: A handy short cut. Python remembers all the variables you have defined at any moment.
This is handy when editing. Without pressing Enter, type into the Shell just

f
Then hold down the Alt key and press the ’/’ key. This key combination is abbreviated Alt-/. You

should see f autocompleted to be first. This is particularly useful if you have long identifiers! You can
press Alt-/ several times if more than one identifier starts with the initial sequence of characters you typed.
If you press Alt-/ again you should see fred. Backspace and edit so you have fi, and then and press Alt-/
again. You should not see fred this time, since it does not start with fi.

1.6.1. Literals and Identifiers. Expressions like 27 or ’hello’ are called literals, coming from the
fact that they literally mean exactly what they say. They are distinguished from variables, who value is not
directly determined by their name.

The sequence of characters used to form a variable name (and names for other Python entities later) is
called an identifier. It identifies a Python variable or other entity.

There are some restrictions on the character sequence that make up an identifier:
• The characters must all be letters, digits, or underscores ’_’, and must start with a letter. In
particular, punctuation and blanks are not allowed.

• There are some words that are reserved for special use in Python. You may not use these words
as your own identifiers. They are easy to recognize in Idle, because they are automatically colored
orange. For the curious, you may read the full list:
False class finally is return
None continue for lambda try
True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass
break except in raise

There are also identifiers that are automatically defined in Python, and that you could redefine, but you
probably should not unless you really know what you are doing! When you start the editor, we will see how
Idle uses color to help you know what identifies are predefined.

Python is case sensitive: The identifiers last, LAST, and LaSt are all different. Be sure to be consistent.
Using the Alt-/ auto-completion shortcut in Idle helps ensure you are consistent.

What is legal is distinct from what is conventional or good practice or recommended. Meaningful
names for variables are important for the humans who are looking at programs, understanding them,
and revising them. That sometimes means you would like to use a name that is more than one word
long, like price at opening, but blanks are illegal! One poor option is just leaving out the blanks, like
priceatopening. Then it may be hard to figure out where words split. Two practical options are

• underscore separated: putting underscores (which are legal) in place of the blanks, like price_at_opening.
• using camelcase: omitting spaces and using all lowercase, except capitalizing all words after the
first, like priceAtOpening

Use the choice that fits your taste (or the taste or convention of the people you are working with).

1.7. Print Function, Part I

In interactive use of the Python interpreter, you can type an expression and immediately see the result
of its evaluation. This is fine to test out syntax and maybe do simple calculator calculations. In a program

1.9. THE IDLE EDITOR AND EXECUTION 17

run from a file like the first sample program, Python does not display expressions this way. If you want your
program to display something, you can give explicit instructions with the print function. Try in the Shell:

x = 3
y = 5
print(’The sum of’, x, ’plus’, y, ’is’, x+y)

The print function will prints as strings everything in a comma-separated sequence of expressions, and it
will separate the results with single blanks by default. Note that you can mix types: anything that is not
already a string is automatically converted to its string representation.

You can also use it with no parameters:
print()

to just advance to the next line.

1.8. Strings Part II

1.8.1. Triple Quoted String Literals. Strings delimited by one quote character are required to lie
within a single Python line. It is sometimes convenient to have a multi-line string, which can be delimited
with triple quotes: Try typing the following. You will get continuation lines until the closing triple quotes.
Try in the Shell:

sillyTest = ’’’Say,
"I’m in!"
This is line 3’’’
print(sillyTest)

The line structure is preserved in a multi-line string. As you can see, this also allows you to embed both
single and double quote characters!

1.8.2. Escape Codes. Continuing in the Shell with sillyTest, enter just
sillyTest

The answer looks strange! It indicates an alternate way to encode the string internally in Python using escape
codes. Escape codes are embedded inside string literals and start with a backslash character (\). They are
used to embed characters that are either unprintable or have a special syntactic meaning to Python that
you want to suppress. In this example you see the most common ones:

Escape code Meaning
\’ ’
\n newline
\\ \

The newline character indicates further text will appear on a new line when printed. When you use a
print function, you get the actual printed meaning of the escaped coded character.

Predict the result, and try in the Shell:
print(’a\nb\n\nc’)

Did you guess the right number of lines splitting in the right places?

1.9. The Idle Editor and Execution

1.9.1. Loading a Program in the Idle Editor, and Running It. It is time to put longer collections
of instructions together. That is most easily done by creating a text file and running the Python interpreter
on the file. Idle simplifies that process.

First you can put an existing file into an Idle Edit Window. Click on the Idle File menu and select Open.
(Or as you see, you can use the shortcut Ctrl+O. That means holding down the Ctrl key, and pressing the
letter O for Open.) You should get a file selection dialog. You should have the sample program madlib.py
displayed in the list. Select it and open it. (If you do not see the program, then you either failed to download
the example programs, Section 1.2.1, or you did not start Idle in the proper folder, Section 1.2.4.)

You will see the source code again. Now run this program from inside of Idle: Go to the Run menu of
that Edit window, and select Run Module. Notice the shortcut (F5).

1.9. THE IDLE EDITOR AND EXECUTION 18

If the Shell window does not automatically come to the foreground, select it. You should see a line
saying “RESTART” and then the start of the execution of the Mad Lib program with the cursor waiting for
your entry after the first prompt. Finish executing the program. Be sure to type the final requested Enter,
so you get back to the interpreter prompt: >�>�>

Look at the editor window again. You should see that different parts of the code have different colors.
String literals are likely green. The reserved words def are likely orange. Look at the last two lines, where
the identifier tellStory is black, and the identifier input is likely purple. Only identifiers that are not
predefined by Python are black. If you create an identifier name, make sure Idle shows it in black.

1.9.2. A Bug Possible When Restarting Program Execution in Idle. When you execute a
program from the Idle Editor, the interpreter gives a banner saying “RESTART”, meaning that all the
things you defined in any shell session so far are wiped clean and the program you are running starts fresh.
There is one egregious exception to that, that was still present at least in the version of Idle for Python 3.1
in Windows. We will try to demonstrate the bug. (A bug is an error in a program.)

Start running the Mad Lib program again by going to the Editor Window containing madlib.py, and
start running the program again, but do not continue....

You should see a prompt for user input generated by the program. Ignore this prompt and go back to
the Edit Window and start the Mad Lib program again.

If this bug is still present, you should see a difference in this restart: This time after the RESTART
banner and the interpreter prompt: >�>�>, which looks innocent enough, but this program should show the
program’s prompt string for input.

The problem only comes up because you interrupted the last execution when user input was being waited
for. The restart was not complete here: The system is still looking for the pending user input from the last
execution.

The fix is simple: Make sure the Interpreter Window is the currently selected window, and press return
to terminate the lost user input. In some circumstances, you may need to press return a second time.

After that the program should start up normally with its prompt.
Watch out for this behavior, and remember the fix.

1.9.3. The Classic First Program . Make sure you have Idle started in your Python directory (in
Windows with the provided Idle shortcut link), where you will store program files. (Do not start Idle from
the Windows Start Menu!) If you just started Idle now, you may already have a blank Edit Window in
front of you. If not, open a new window by going to the File menu and selecting New Window. This gives
you a rather conventional text editing window with the mouse available, ability to cut and paste, plus a few
special options for Python.

Type (or paste) the following into the editor window:
print(’Hello world!’)

Save the file with the File menu -> Save, and then enter the file name hello.py. Python program files
should always be given a name ending in ".py", and you must enter the .py extension explicitly .

If you look in the editor, you should see that your text is color coded. The editor will color different
parts of Python syntax in special colors. (In version 2.4 of Python, the coloring only happens after you save
your file with the ’.py’ ending.)

Now that you have a complete, saved program, choose Run menu -> Run Module. You should see the
program run in the Python Shell window.

You just wrote and executed a program. Unlike when you use the shell, this code is saved to a file in
your Python folder. You can open and execute the file any time you want. (In Idle, use File->Open.)

To the interpreter, a program source file corresponds to a Python module. We will tend to use the more
general term: a program file is a module. Note the term from the menu when running the program.

Distinguish program code from Shell text: It is easy to confuse the Shell and the Edit windows. Make
sure you keep them straight. The hello.py program is just the line

print(’Hello world!’)
that you typed into the edit window and saved. When you ran the program in Idle, you saw results in the
Shell. First came the Restart notice, the one-line output from the program saying hello, and a further Shell
prompt:

1.10. INPUT AND OUTPUT 19

>�>�> ================================ RESTART ========
>�>�>
Hello world!
>�>�>

You could also have typed this single printing line directly in the Shell in response to a Shell prompt. When
you see >�>�>, you could enter the print function and get the exchange between you and the Shell:

>�>�> print(’Hello world’)
Hello world!
>�>�>

The three lines above are not a program you could save in a file and run. This is just an exchange in the
Shell, with its >�>�> prompts, individual line to execute and the response. Again, just the single line, with no
>�>�>,

print(’Hello world!’)

entered into the Edit window forms a program you can save and run. We will shortly get to more interesting
many-statement programs, where it is much more convenient to use the Edit window than the Shell!

1.9.4. Program Documentation String. The program above is self evident, and shows how short
and direct a program can be (unlike other languages like Java). Still, right away, get used to documenting
a program. Python has a special feature: If the beginning of a program is just a quoted string, that string
is taken to be the program’s documentation string. Open the example file hello2.py in the Edit window:

’’’A very simple program,
showing how short a Python program can be!
Authors: ___, ___
’’’

print(’Hello world!’) #This is a stupid comment after the # mark

Most commonly, the initial documentation goes on for several lines, so a multi-line string delimiter is used
(the triple quotes). Just for completeness of illustration in this program, another form of comment is
also shown, a comment that starts with the symbol # and extends to the end of the line. The Python
interpreter completely ignores this form of comment. Such a comment should only be included for better
human understanding. Avoid making comments that do not really aid human understanding. (Do what I
say, not what I did above.) Good introductory comment strings and appropriate names for the parts of your
programs make fewer # symbol comments needed.

Run the program and see the documentation and comment make no difference in the result.

1.9.5. Screen Layout. Of course you can arrange the windows on your computer screen any way that
you like. A suggestion as you start to use the combination of the editor to write, the shell to run, and the
tutorial to follow along: Make all three mostly visible your computer screen at once. Drag the editor window
to the upper left. Place the Shell window to the lower left, and perhaps reduce its height a bit so there is not
much overlap. If you are looking at the web version of the tutorial on the screen, make it go top to bottom
on the right, but not overlap the Idle windows too much. The web page rendering should generally adapt
to the width pretty well. You can always temporarily maximize the window. Before resizing the browser
window, it is good to look for an unusual phrase on your page, and search for it after resizing, since resizing
can totally mess up your location in the web page.

There is an alternative to maximization for the Idle editor window: It you want it to go top to bottom
of the screen but not widen, you can toggle that state with Alt-2. Play with all this.

1.10. Input and Output

1.10.1. The input Function. The hello program of Section 1.9.3 always does the same thing. This is
not very interesting. Programs are only going to be reused if they can act on a variety of data. One way to
get data is directly from the user. Modify the hello.py program as follows in the editor, and save it from the
File menu with Save As...., using the name hello_you.py.

1.10. INPUT AND OUTPUT 20

person = input(’Enter your name: ’)
print(’Hello’, person)

Run the program. In the Shell you should see
Enter your name:

Follow the instruction (and press Enter). Make sure the typing cursor is in the Shell window, at the end
of this line. After you type your response, you can see that the program has taken in the line you typed.
That is what the built-in function input does: First it prints the string you give as a parameter (in this case
’Enter your name: ’), and then it waits for a line to be typed in, and returns the string of characters
you typed. In the hello_you.py program this value is assigned to the variable person, for use later.

The parameter inside the parentheses after input is important. It is a prompt, prompting you that
keyboard input is expected at that point, and hopefully indicating what is being requested. Without the
prompt, the user would not know what was happening, and the computer would just sit there waiting!

Open the example program, interview.py. Before running it (with any made-up data), see if you can
figure out what it will do:

’’’Illustrate input and print.’’’

applicant = input("Enter the applicant’s name: ")
interviewer = input("Enter the interviewer’s name: ")
time = input("Enter the appointment time: ")
print(interviewer, "will interview", applicant, "at", time)

The statements are executed in the order they appear in the text of the program: sequentially. This is the
simplest way for the execution of the program to flow. You will see instructions later that alter that natural
flow.

If we want to reload and modify the hello_you.py program to put an exclamation point at the end,
you could try:

person = input(’Enter your name: ’)
print(’Hello’, person, ’!’)

Run it and you see that it is not spaced right. There should be no space after the person’s name, but the
default behavior of the print function is to have each field printed separated by a space. There are several
ways to fix this. You should know one. Think about it before going on to the next section. Hint: 4

1.10.2. Print with Keyword Parameter sep. One way to put punctuation but no space after the
person in hello_you.py is to use the plus operator, +. Another approach is to change the default separatpr
between fields in the print function. This will introduce a new syntax feature, keyword parameters. The
print function has a keyword parameter named sep. If you leave it out of a call to print, as we have so far,
it is set equal to a space by default. If you add a final field, sep=”, in the print function in hello_you.py,
you get the following example file, hello_you2.py:

person = input(’Enter your name: ’)
print(’Hello ’, person, ’!’, sep=’’)

Try the program.
Keyword paramaters must be listed at the end of the parameter list.

1.10.3. Numbers and Strings of Digits. Consider the following problem: Prompt the user for two
numbers, and then print out a sentence stating the sum. For instance if the user entered 2 and 3, you would
print “The sum of 2 and 3 is 5.”

You might imagine a solution like the example file addition1.py, shown below. There is a problem.
Can you figure it out before you try it? Hint: 5 End up running it in any case.

x = input("Enter an integer: ")
y = input("Enter another integer: ")
print(’The sum of ’, x, ’ and ’, y, ’ is ’, x+y, ’.’, sep=’’) # error!

4The + operation on strings adds no extra space.
5The input function produces values of string type.

1.10. INPUT AND OUTPUT 21

We do not want string concatenation, but integer addition. We need integer operands. Briefly mentioned in
Section 1.3 was the fact that we can use type names as functions to convert types. One approach would be
to do that. Further variable names are also introduced in the example addition2.py file below to emphasize
the distinctions in types. Read and run:

’’’Conversion of strings to int before addition’’’

xString = input("Enter an integer: ")
x = int(xString)
yString = input("Enter another integer: ")
y = int(yString)
print(’The sum of ’, x, ’ and ’, y, ’ is ’, x+y, ’.’, sep=’’)

Needing ito convert string input to numbersis a common situation, both with keyboard input and later in
web pages. While the extra variables above emphasized the steps, it is more concise to write as in the
variation in example file, addition3.py, doing the conversons to type int immediately:

’’’Two numeric inputs’’’

x = int(input("Enter an integer: "))
y = int(input("Enter another integer: "))
print(’The sum of ’, x, ’ and ’, y, ’ is ’, x+y, ’.’, sep=’’)

The simple programs so far have followed a basic programming pattern: input-calculate-output. Get all the
data first, calculate with it second, and output the results last. The pattern sequence would be even clearer
if we explicitly create a named result variable in the middle, as in addition4.py:

x = int(input("Enter an integer: "))
y = int(input("Enter another integer: "))
sum = x + y
print(’The sum of ’, x, ’ and ’, y, ’ is ’, sum, ’.’, sep=’’)

We will see more complicated patterns, which involve repetition, in the future.

Exercise 1.10.3.1. * Write a version, add3.py, that asks for three numbers, and lists all three, and
their sum, in similar format to the example above.

Exercise 1.10.3.2. * a. Write a program, quotient.py, that prompts the user for two integers, and
then prints them out in a sentence with an integer division problem like "The quotient of 14 and 3 is
4 with a remainder of 2". Review Section 1.4.3 if you forget the integer division or remainder operator.

1.10.4. String Format Operation. A common convention is fill-in-the blanks. For instance,
Hello _____!

and you can fill in the name of the person greeted, and combine given text with a chosen insertion. Python has
a similar construction, better called fill-in-the-braces. There is a particular operation on strings called format,
that makes substitutions into places enclosed in braces. For instance the example file, hello_you3.py, creates
and prints the same string as in hello_you2.py from the previous section:

person = input(’Enter your name: ’)
greeting = ’Hello {}!’.format(person)
print(greeting)

There are several new ideas here!.
First method calling syntax is used. You will see in this more detail at the beginning of the next chapter.

Strings and other objects have a special syntax for functions, called methods, associated with the particular
type of object. In particular str objects have a method called format. The syntax for methods has the
object followed by a period followed by the method name, and further parameters in parentheses.

object.methodname(paramters)
In the example above, the object is the string ’Hello {}!’. The method is named format. There is

one further parameter, person.
The string has a special form, with braces embedded. Places where braces are embedded are replaced by

the value of an expression taken from the parameter list for the format method. There are many variations

1.10. INPUT AND OUTPUT 22

on the syntax between the braces. In this case we use the syntax where the first (and only) location in the
string with braces has a substitution made from the first (and only) parameter

In the code above, this new string is assigned to the identifier greeting, and then the string is printed.
The identifier greeting was introduced to break the operations into a clearer sequence of steps. Since the
value of greeting is only referenced once, it can be eliminated with the more concise version:

person = input(’Enter your name: ’)
print(’Hello {}!’.format(person))

Consider the interview program. Suppose we want to add a period at the end of the sentence (with no space
before it). One approach would be to combine everything with plus signs. Another way is printing with
keyword sep=’’. Another approach is with string formating. Here the idea is to fill in the blanks in

_____ will interview _____ at _____.
There are multiple places to substiitute, and the format approach can be extended to multiple substitutions:
Each place in the format string where there is ’{}’, the format operation will substitute the value of the
next parameter in the format parameter list.

Run the example file interview2.py, and check that the results from all three methods match.
’’’Compare different approaches to printing with embedded values.’’’

applicant = input("Enter the applicant’s name: ")
interviewer = input("Enter the interviewer’s name: ")
time = input("Enter the appointment time: ")
print(interviewer + ’ will interview ’ + applicant + ’ at ’ + time +’.’)
print(interviewer, ’ will interview ’, applicant, ’ at ’, time, ’.’, sep=’’)
print(’{} will interview {} at {}.’.format(interviewer, applicant, time))

A technical point: Since braces have special meaning in a format string, there must be a special rule if
you want braces to actually be included in the final formatted string. The rule is to double the braces:
’{{’ and ’}}’. The example code formatBraces.py, shown below, makes setStr refer to the string
’The set is {5, 9}.’. The initial and final doubled braces in the format string generate literal braces in
the formatted string:

a = 5
b = 9
formatStr = ’The set is {{{}, {}}}.’
setStr = formatStr.format(a, b)
print(setStr)

This kind of format string depends directly on the order of the parameters to the format method. There
is another approach with a dictionary, that was used in the first sample program, and will be discussed
more in Section 1.12.2 on dictionaries. The dictionary approach is probably the best in many cases, but the
count-based approach is an easier start, particularly if the parameters are just used once, in order.

(Optional elaboration) Imagine the format parmaters numbered in order, starting from 0. In this
case 0, 1, and 2. The number of the parameter position may be included inside the braces, so an alternative
to the last line of interview2.py is (added in example file interview3.py):

print(’{0} will interview {1} at {2}.’.format(interviewer, applicant, time))
This is more verbose than the previous version, with no obvious advantage. If you desire to use some of
the parameters more than once, then the approach with the numerical identification with the parameters is
useful. Every place the string includes ’{0}’, the format operation will substitute the value of the initial
parameter in the list. Wherever ’{1}’ appears, the next format parameter will be substituted....

Predict the results of the example file arith.py shown below,and then check yourself by running it. In
this case the numbers referring to the parameter positions are necessary. They are both repeated and used
out of order:

’’’Fancier format string example.’’’

1.11. DEFINING FUNCTIONS OF YOUR OWN 23

x = 20
y = 30
formatStr = ’{0} + {1} = {2}; {0} * {1} = {3}.’
equations = formatStr.format(x, y, x+y, x*y)
print(equations)

Try the program.

Exercise 1.10.4.1. * Write a version of Exercise 1.10.3.1, add3f.py, that uses the string format method
to construct the final string.

Exercise 1.10.4.2. * Write a version of Exercise 1.10.3.2, quotientformat.py, that uses the string
format method to construct the final string.

1.11. Defining Functions of your Own

1.11.1. Syntax Template Typography. When new Python syntax is introduced, the usual approach
will be to give both specific examples and general templates. In general templates for Python syntax the
typeface indicates the the category of each part:

Typeface Meaning
Typewriter font Text to be written verbatim

Emphasized A place where you can use an arbitrary identifier. The emphasized text attempts to
be descriptive of the meaning of the identifier in the current context.

Normal text A description of what goes in that position, without giving explicit syntax
We will use these conventions shortly in the discussion of function syntax, and will continue to use the

conventions throughout the tutorial.

1.11.2. A First Function Definition. If you know it is the birthday of a friend, Emily, you might
tell those gathered with you to sing "Happy Birthday to Emily".

We can make Python display the song. Read, and run if you like, the example program birthday1.py:
print("Happy Birthday to you!")
print("Happy Birthday to you!")
print("Happy Birthday, dear Emily.")
print("Happy Birthday to you!")

You would probably not repeat the whole song to let others know what to sing. You would give a request
to sing via a descriptive name like "Happy Birthday to Emily".

In Python we can also give a name like happyBirthdayEmily, and associate the name with whole song
by using a function definition. We use the Python def keyword, short for define.

Read for now:
def happyBirthdayEmily():

print("Happy Birthday to you!")
print("Happy Birthday to you!")
print("Happy Birthday, dear Emily.")
print("Happy Birthday to you!")

There are several parts of the syntax for a function definition to notice:
The heading contains def, the name of the function, parentheses, and finally a colon.

def function_name():
The remaining lines form the function body and are indented by a consistent amount. (The exact amount is
not important to the interpreter, though 2 or 4 spaces are common conventions.)

The whole definition does just that: defines the meaning of the name happyBirthdayEmily, but it does
not do anything else yet – for example, the definition itself does not make anything be printed yet. This is
our first example of altering the order of execution of statements from the normal sequential order. This is
important: the statements in the function definition are not executed as Python first passes over the lines.

The code above is in example file birthday2.py. Load it in Idle and execute it from there. Nothing
should happen visibly. This is just like defining a variable: Python just remembers the function definition

1.11. DEFINING FUNCTIONS OF YOUR OWN 24

for future reference. After Idle finished executing a program, however, its version of the Shell remembers
function definitions from the program.

In the Idle Shell (not the editor), enter
happyBirthdayEmily

The result probably surprises you! When you give the Shell an identifier, it tells you its value. Above,
without parentheses, it identifies the function code as the value (and gives a location in memory of the
code). Now try the name in the Idle Shell with parentheses added:

happyBirthdayEmily()
The parentheses tell Python to execute the named function rather than just refer to the function. Python
goes back and looks up the definition, and only then, executes the code inside the function definition. The
term for this action is a function call or function invocation. Note, in the function call there is no def, but
there is the function name followed by parentheses.

function_name()
In many cases we will use a feature of program execution in Idle: that after program execution is completed,
the Idle Shell still remembers functions defined in the program. This is not true if you run a program by
selecting it directly in the operating system. The general assumption in this Tutorial will be that programs
are run in Idle and the Idle Shell is the Shell referred to. It will be explicitly stated when you should run a
program directly from the operating system. (With most of the examples in the tutorial, running from the
operating system is OK – the execution method will not actually matter.)

Look at the example program birthday3.py. See it just adds two more lines, not indented. Can you
guess what it does? Try it:

def happyBirthdayEmily(): #1
print("Happy Birthday to you!") #2
print("Happy Birthday to you!") #3
print("Happy Birthday, dear Emily.") #4
print("Happy Birthday to you!") #5

happyBirthdayEmily() #6
happyBirthdayEmily() #7

The execution sequence is different from the textual sequence:
(1) Lines 1-5: Python starts from the top, reading and remembering the definition. The definition ends

where the indentation ends. (The code also shows a blank line there, but that is only for humans,
to emphasize the end of the definition.)

(2) Line 6: this is not indented inside any definition, so the interpreter executes it directly, calling
happyBirthdayEmily() while remembering where to return.

(3) Lines 1-5: The code of the function is executed for the first time, printing out the song.
(4) End of line 6: Back from the function call. continue on.
(5) Line 7: the function is called again while this location is remembered.
(6) Lines 1-5: The function is executed again, printing out the song again.
(7) End of line 7: Back from the function call, but at this point there is nothing more in the program,

and execution stops.
Functions alter execution order in several ways: by statements not being executed as the definition is first
read, and then when the function is called during execution, jumping to the function code, and back at the
the end of the function execution.

If it also happens to be Andre’s birthday, we might define a function happyBirthdayAndre, too. Think
how to do that before going on

1.11.3. Multiple Function Definitions. Here is example program birthday4.py where we add a
function happyBirthdayAndre, and call them both. Guess what happens, and then try it:

def happyBirthdayEmily(): # same old function
print("Happy Birthday to you!")
print("Happy Birthday to you!")

1.11. DEFINING FUNCTIONS OF YOUR OWN 25

print("Happy Birthday, dear Emily.")
print("Happy Birthday to you!")

def happyBirthdayAndre():
print("Happy Birthday to you!")
print("Happy Birthday to you!")
print("Happy Birthday, dear Andre.")
print("Happy Birthday to you!")

happyBirthdayEmily()
happyBirthdayAndre()

Again, everything is definitions except the last two lines. They are the only lines executed directly. The
calls to the functions happen to be in the same order as their definitions, but that is arbitrary. If the last
two lines were swapped, the order of operations would change. Do swap the last two lines so they appear as
below, and see what happens when you execute the program:

happyBirthdayAndre()
happyBirthdayEmily()

Functions that you write can also call other functions you write. It is a good convention to have the main
action of a program be in a function for easy reference. The example program birthday5.py has the two
Happy Birthday calls inside a final function, main. Do you see that this version accomplishes the same thing
as the last version? Run it.

def happyBirthdayEmily(): #1
print("Happy Birthday to you!") #2
print("Happy Birthday to you!") #3
print("Happy Birthday, dear Emily.") #4
print("Happy Birthday to you!") #5

def happyBirthdayAndre(): #6
print("Happy Birthday to you!") #7
print("Happy Birthday to you!") #8
print("Happy Birthday, dear Andre.") #9
print("Happy Birthday to you!") #10

def main(): #11
happyBirthdayAndre() #12
happyBirthdayEmily() #13

main() #14
If we want the program to do anything automatically when it is runs, we need one line outside of definitions!
The final line is the only one directly executed, and it calls the code in main, which in turn calls the code in
the other two functions.

Detailed order of execution:
(1) Lines 1-13: Definitions are read and remembered
(2) Line 14: The only line outside definitions, is executed directly. This location is remembered as

main is executed.
(3) Line 11: Start on main
(4) Line 12. This location is remembered as execution jumps to happyBirthdayAndre
(5) Lines 6-10 are executed and Andre is sung to.
(6) Return to the end of Line 12: Back from happyBirthdayAndre function call
(7) Line 13: Now happyBirthdayEmily is called as this location is remembered.
(8) Lines 1-5: Sing to Emily
(9) Return to the end of line 13: Back from happyBirthdayEmily function call, done with main
(10) Return to the end of line 14: Back from main; at the end of the program

1.11. DEFINING FUNCTIONS OF YOUR OWN 26

There is one practical difference from the previous version. After execution, if we want to give another round
of Happy Birthday to both persons, we only need to enter one further call in the Shell to:

main()
As a simple example emphasizing the significance of a line being indented, guess what the the example file
order.py does, and run it to check:

def f():
print(’In function f’)
print(’When does this print?’)

f()
Modify the file so the second print function is outdented like below. What should happen now? Try it:

def f():
print(’In function f’)

print(’When does this print?’)
f()

The lines indented inside the function definition are remembered first, and only executed when the function
f is invoked at the end. The lines outside any function definition (not indented) are executed in order of
appearance.

Exercise 1.11.3.1. * Write a program, poem.py, that defines a function that prints a short poem or
song verse. Give a meaningful name to the function. Have the program end by calling the function three
times, so the poem or verse is repeated three times.

1.11.4. Function Parameters. As a young child, you probably heard Happy Birthday sung to a
couple of people, and then you could sing to a new person, say Maria, without needing to hear the whole
special version with Maria’s name in it word for word. You had the power of abstraction. With examples
like the versions for Emily and Andre, you could figure out what change to make it so the song could be
sung to Maria!

Unfortunately, Python is not that smart. It needs explicit rules. If you needed to explain explicitly to
someone how Happy Birthday worked in general, rather than just by example, you might say something like
this:

First you have to be given a person’s name. Then you sing the song with the person’s name inserted at
the end of the third line.

Python works something like that, but with its own syntax. The term “person’s name” serves as a
stand-in for the actual data that will be used, “Emily”, “Andre”, or “Maria”. This is just like the association
with a variable name in Python. “person’s name” is not a legal Python identifier, so we will use just person
as this stand-in.

The function definition indicates that the variable name person will be used inside the function by
inserting it between the parentheses of the definition. Then in the body of the definition of the function,
person is used in place of the real data for any specific person’s name. Read and then run example program
birthday6.py:

def happyBirthday(person): #1
print("Happy Birthday to you!") #2
print("Happy Birthday to you!") #3
print("Happy Birthday, dear " + person + ".") #4
print("Happy Birthday to you!") #5

happyBirthday(’Emily’) #6
happyBirthday(’Andre’) #7

In the definition heading for happyBirthday, person is referred to as a parameter, or a formal parameter.
This variable name is a placeholder for the real name of the person being sung to.

The last two lines of the program, again, are the only ones outside of definitions, so they are the only
ones executed directly. There is now an actual name between the parentheses in the function calls. The value
between the parentheses here in the function call is referred to as an argument or actual parameter of the
function call. The argument supplies the actual data to be used in the function execution. When the call is

1.11. DEFINING FUNCTIONS OF YOUR OWN 27

made, Python does this by associating the formal parameter name person with the actual parameter data,
as in an assignment statement. In the first call, this actual data is ’Emily’. We say the actual parameter
value is passed to the function.

The execution in greater detail:
(1) Lines 1-5: Definition remembered
(2) Line 6: Call to happyBirthday, with actual parameter ’Emily’.
(3) Line 1: ’Emily’ is passed to the function, so person = ’Emily’
(4) Lines 2-5: The song is printed, with ’Emily’ used as the value of person in line 4: printing ’Happy

birthday, dear Emily.’
(5) End of line 6: Return from the function call and continue
(6) Line 7: Call to happyBirthday, this time with actual parameter ’Andre’
(7) Line 1: ’Andre’ is passed to the function, so person = ’Andre’
(8) Lines 2-5: The song is printed, with ’Andre’ used as the value of person in line 4: printing ’Happy

birthday, dear Andre.’
(9) End of line 7: Return from the function call, and the program is over.

The beauty of this system is that the same function definition can be used for a call with a different actual
parameter variable, and then have a different effect. The value of the variable person is used in the third
line of happyBirthday, to put in whatever actual parameter value was given.

This is the power of abstraction. It is one application of the most important principal in programming.
Rather than have a number of separately coded parts with only slight variations, see where it is appropriate to
combine them using a function whose parameters refer to the parts that are different in different situations.
Then the code is written to be simultaneously appropriate for the separate specific situations, with the
substitutions of the right parameter values.

You can go back to having a main function again, and everything works. Run birthday7.py:
def happyBirthday(person):

print("Happy Birthday to you!")
print("Happy Birthday to you!")
print("Happy Birthday, dear " + person + ".")
print("Happy Birthday to you!")

def main():
happyBirthday(’Emily’)
happyBirthday(’Andre’)

main()

Exercise 1.11.4.1. * Make your own further change to the file and save it as birthdayMany.py: Add a
function call, so Maria gets a verse, in addition to Emily and Andre. Also print a blank line between verses.
(You may either do this by adding a print line to the function definition, or by adding a print line between
all calls to the function.)

We can combine function parameters with user input, and have the program be able to print Happy Birthday
for anyone. Check out the main method and run birthday_who.py:

def happyBirthday(person):
print("Happy Birthday to you!")
print("Happy Birthday to you!")
print("Happy Birthday, dear " + person + ".")
print("Happy Birthday to you!")

def main():
userName = input("Enter the Birthday person’s name: ")
happyBirthday(userName)

main()

1.11. DEFINING FUNCTIONS OF YOUR OWN 28

This last version illustrates several important ideas:
(1) There are more than one way to get information into a function:

(a) Have a value passed in through a parameter.
(b) Prompt the user, and obtain data from the keyboard.

(2) It is a good idea to separate the internal processing of data from the external input from the user
by the use of distinct functions. Here the user interaction is in main, and the data is manipulated
in happyBirthday.

(3) In the first examples of actual parameters, we used literal values. In general an actual parameter
can be an expression. The expression is evaluated before it is passed in the function call. One of the
simplest expressions is a plain variable name, which is evaluated by replacing it with its associated
value. Since it is only the value of the actual parameter that is passed, not any variable name,
there is no need to have an actual parameter variable name match a formal parameter name. (Here
we have the value of userName in main becoming the value of person in happyBirthday.)

1.11.5. Multiple Function Parameters. A function can have more than one parameter in a param-
eter list separated by commas. Here the example program addition5.py uses a function to make it easy to
display many sum problems. Read and follow the code, and then run:

def sumProblem(x, y):
sum = x + y
print(’The sum of ’, x, ’ and ’, y, ’ is ’, sum, ’.’, sep=’’)

def main():
sumProblem(2, 3)
sumProblem(1234567890123, 535790269358)
a = int(input("Enter an integer: "))
b = int(input("Enter another integer: "))
sumProblem(a, b)

main()

The actual parameters in the function call are evaluated left to right, and then these values are associated
with the formal parameter names in the function definition, also left to right. For example the function call
with actual parameters, f(actual1, actual2, actual3), calling the function f with definition heading
def f(formal1, formal2, formal3):
acts approximately as if the first lines executed inside the called function were

formal1 = actual1
formal2 = actual2
formal3 = actual3

Functions provide extremely important functionality to programs, allowing task to be defined once and
performed repeatedly with different data. It is essential to see the difference between the formal parameters
used to describe what is done inside the function definition (like x and y in the definition of sumProblem)
and the actual parameters (like 2 and 3 or 1234567890123 and 535790269358) which substitute for the formal
parameters when the function is actually executed. The main method above uses three different sets of
actual parameters in the three calls to sumProblem.

Exercise 1.11.5.1. ’* Modify the program above and save it as quotientProb.py. The new program
should have a quotientProblem function, printing as in the Exercise 1.10.3.2. The main method should test
the function on several sets of literal values, and also test the function with input from the user.

1.11.6. Returned Function Values. You probably have used mathematical functions in algebra class,
but they all had calculated values associated with them. For instance if you defined f(x) = x2, then it follows
that f(3) is 32 = 9, and f(3)+f(4) is 32+42 = 25. Function calls in expressions get replaced during evaluation
by the value of the function.

The corresponding definition and examples in Python would be the following, also in the example
program return1.py. Read and run:

1.11. DEFINING FUNCTIONS OF YOUR OWN 29

def f(x):
return x*x

print(f(3))
print(f(3) + f(4))

The new Python syntax is the return statement, with the word return followed by an expression. Functions
that return values can be used in expressions, just like in math class. When an expression with a function
call is evaluated, the function call is effectively replaced temporarily by its returned value. Inside the Python
function, the value to be returned is given by the expression in the return statement. After the function f
finishes executing from inside

print(f(3))
it is as if the statement temporarily became

print(9)
and similarly when executing

print(f(3) + f(4))
the interpreter first evaluates f(3) and effectively replaces the call by the returned result, 9, as if the statement
temporarily became

print(9 + f(4))
and then the interpreter evaluates f(4) and effectively replaces the call by the returned result, 16, as if the
statement temporarily became

print(9 + 16)
resulting finally in 25 being calculated and printed.

Python functions can return any type of data, not just numbers, and there can be any number of
statements executed before the return statement. Read, follow, and run the example program return2.py:

def lastFirst(firstName, lastName): #1
separator = ’, ’ #2
result = lastName + separator + firstName #3
return result #4

print(lastFirst(’Benjamin’, ’Franklin’)) #5
print(lastFirst(’Andrew’, ’Harrington’)) #6

The code above has a new feature, variables separator and result are given a value in the function, but
separator and result are not among the formal parameters. The assignments work as you would expect
here. More on this shortly, in Section 1.11.8 on local scope.

Details of the execution:
(1) Lines 1-4: Remember the definition
(2) Line 5: call the function, remembering where to return
(3) Line 1: pass the parameters: firstName = ’Benjamin’; lastName = ’Franklin’
(4) Line 2: Assign the variable separator the value ’, ’
(5) Line 3: Assign the variable result the value of

lastName + separator + firstName which is
’Franklin’ + ’, ’ + ’Benjamin’, which evaluates to
’Franklin, Benjamin’

(6) Line 4: Return ’Franklin, Benjamin’
(7) Line 5 Use the value returned from the function call so the line effectively becomes

print(’Franklin, Benjamin’)
so print it.

(8) Line 6: call the function with the new actual parameters, remembering where to return
(9) Line 1: pass the parameters: firstName = ’Andrew’; lastName = ’Harrington’
(10) Lines 2-4: ... calculate and return ’Harrington, Andrew’
(11) Line 6: Use the value returned by the function and print ’Harrington, Andrew’

1.11. DEFINING FUNCTIONS OF YOUR OWN 30

Compare return2.py and addition5.py, from the previous section. Both use functions. Both print, but
where the printing is done differs. The function sumProblem prints directly inside the function and returns
nothing explicitly. On the other hand lastFirst does not print anything but returns a string. The caller
gets to decide what to do with the string, and above it is printed in the main program.

Open addition5.py again, and introduce a common mistake. Change the last line of the function main
inserting print, so it says

print(sumProblem(a, b))

Then try running the program. The desired printing is actually done inside the function sumProblem. You
introduced a statement to print what sumProblem returns. Although sumProblem returns nothing explicitly,
Python does make every function return something. If there is nothing explicitly returned, the special value
None is returned. You should see that in the Shell output. This is a fairly common error. If you see a ’None’
is your output where you do not expect it, it is likely that you have printed the return value of a function
that did not return anything explicitly!

Exercise 1.11.6.1. Create quotientReturn.py by modifying quotientProb.py from Exercise 1.11.5.1 so
that the program accomplishes the same thing, but everywhere change the quotientProblem function into
one called quotientString that merely returns the string rather than printing the string directly. Have the
main function print the result of each call to the quotientString function.

1.11.7. Two Roles: Writer and Consumer of Functions. The remainder of Section1.11 covers
finer points about functions that you might skip on a first reading.

We are only doing tiny examples so far to get the basic idea of functions. In much larger programs,
functions are useful to manage complexity, splitting things up into logically related, modest sized pieces.
Programmers are both writers of functions and consumers of the other functions called inside their functions.
It is useful to keep those two roles separate:

The user of an already written function needs to know:
(1) the name of the function
(2) the order and meaning of parameters
(3) what is returned or produced by the function

How this is accomplished is not relevant at this point. For instance, you use the work of the Python
development team, calling functions that are built into the language. You need know the three facts about
the functions you call. You do not need to know exactly how the function accomplishes its purpose.

On the other hand when you write a function you need to figure out exactly how to accomplish your
goal, name relevant variables, and write your code, which brings us to the next section.

1.11.8. Local Scope. For the logic of writing functions, it is important that the writer of a function
knows the names of variables inside the function. On the other hand, if you are only using a function, maybe
written by someone unknown to you, you should not care what names are given to values used internally in
the implementation of the function you are calling. Python enforces this idea with local scope rules: Variable
names initialized and used inside one function are invisible to other functions. Such variables are called
local variables. For example, an elaboration of the earlier program return2.py might have its lastFirst
function with its local variable separator, but it might also have another function that defines a separator
variable, maybe with a different value like ’\n’. They do not conflict. They are independent. This avoids
lots of errors!

For example, the following code in the example program badScope.py causes an execution error. Read
it and run it, and see:

def main():
x = 3
f()

def f():
print(x) #f does not know about the x defined in main

main()

1.12. DICTIONARIES 31

We will fix this error below. The execution error message mentions “global name”. Names defined outside
any function definition, at the “top-level” of your program are called global. They are a special case. They
are discussed more in the next section.

If you do want local data from one function to go to another, define the called function so it includes
parameters! Read and compare and try the program goodScope.py:

def main():
x = 3
f(x)

def f(x):
print(x)

main()
With parameter passing, the parameter name x in the function f does not need to match the name of the
actual parameter in main. The definition of f could just as well have been:

def f(whatever):
print(whatever)

1.11.9. Global Constants. If you define global variables (outside of any function definition), they are
visible inside all of your functions. It is good programming practice to avoid defining global variables and
instead to put your variables inside functions and explicitly pass them as parameters where needed. One
common exception is constants: A constant is a name that you give a fixed data value to, by assigning a
value to the name only in a single assignment statement. You can then use the name of the fixed data value
in expressions later. A simple example program is constant.py:

PI = 3.14159265358979 # global constant -- only place the value of PI is set

def circleArea(radius):
return PI*radius*radius # use value of global constant PI

def circleCircumference(radius):
return 2*PI*radius # use value of global constant PI

print(’circle area with radius 5:’, circleArea(5))
print(’circumference with radius 5:’, circleCircumference(5))

This example uses numbers with decimal points, discussed more in Section 1.14.1. By convnetion, names
for constants are all capital letters.

Issues with global variables do not come up if they are only used as constants.
Function names defined at the top-level also have global scope. This is what allows you to use one

function you defined inside another function you define.

1.12. Dictionaries

1.12.1. Definition and Use of Dictionaries. In common usage, a dictionary is a collection of words
matched with their definitions. Given a word, you can look up its definition. Python has a built in dictionary
type called dict which you can use to create dictionaries with arbitrary definitions for character strings. It
can be used for the common usage, as in a simple English-Spanish dictionary.

Look at the example program spanish1.py and run it.
"""A tiny English to Spanish dictionary is created,
using the Python dictionary type dict.
Then the dictionary is used, briefly.
"""

spanish = dict()

1.12. DICTIONARIES 32

spanish[’hello’] = ’hola’
spanish[’yes’] = ’si’
spanish[’one’] = ’uno’
spanish[’two’] = ’dos’
spanish[’three’] = ’tres’
spanish[’red’] = ’rojo’
spanish[’black’] = ’negro’
spanish[’green’] = ’verde’
spanish[’blue’] = ’azul’

print(spanish[’two’])
print(spanish[’red’])

First an empty dictionary is created using dict(), and it is assigned the descriptive name spanish.
To refer to the definition for a word, you use the dictionary name, follow it by the word inside square

brackets. This notation can either be used on the left-hand side of an assignment to make (or remake) a
definition, or it can be used in an expression (as in the print functions), where its definition is one stored
earlier into the dictionary. For example,

spanish[’hello’] = ’hola’
makes an entry in our spanish dictionary for ’hello’ , where the definition matched to it is ’hola’.
print(spanish[’red’])
retrieves the definition for ’red’, which is ’rojo’.
Since the Spanish dictionary is defined at the top-level, the variable name spanish is still defined after

the program runs: after running the program, use spanish in the Shell to check out the translations of some
more words, other than ’two’ and ’red’.

Creating the dictionary is quite a different activity from the use at the end of the code, so with functions
to encapsulate the tasks, we could write the example program spanish2.py instead, with the same result:

"""A tiny English to Spanish dictionary is created,
using the Python dictionary type dict.
Then the dictionary is used, briefly.
"""

def createDictionary():
’’’Returns a tiny Spanish dictionary’’’
spanish = dict() # creates an empty dictionary
spanish[’hello’] = ’hola’
spanish[’yes’] = ’si’
spanish[’one’] = ’uno’
spanish[’two’] = ’dos’
spanish[’three’] = ’tres’
spanish[’red’] = ’rojo’
spanish[’black’] = ’negro’
spanish[’green’] = ’verde’
spanish[’blue’] = ’azul’
return spanish

def main():
dictionary = createDictionary()
print(dictionary[’two’])
print(dictionary[’red’])

main()

This code illustrates several things about functions.

1.12. DICTIONARIES 33

• First, like whole files, functions can have a documentation string immediately after the definition
heading. It is a good idea to document the return value!

• The dictionary that is created is returned, but the local variable name in the function, spanish, is
lost when the function terminates.

• In main, to remember the dictionary returned, it needs a name. The name does not have to match
the name used in createDictionary. The name dictionary is descriptive.

We could also use the dictionary more extensively. The example program spanish2a.py is the same as above
except it has the following main method

def main():
dictionary = createDictionary()
print(’Count in Spanish: ’ + dictionary[’one’] + ’, ’ +

dictionary[’two’] + ’, ’ + dictionary[’three’] + ’,...’)
print(’Spanish colors: ’ + dictionary[’red’] + ’, ’ +

dictionary[’blue’] + ’, ’ + dictionary[’green’] + ’,...’)
Try it, and check that it makes sense.

Python dictionaries are actually more general than the common use of dictionaries. They do not have to
associate words and their string definitions. They can associate many types of objects with some arbitrary
object. The more general Python terminology for word and definition are key and value. Given a key, you
can look up the corresponding value. The only restriction on the key is that it be an immutable type. This
means that a value of the key’s type cannot be changed internally after it is initially created. Strings and
numbers are immutable. A dictionary is mutable: its value can be changed internally. (You can add new
definitions to it!) We will see more mutable and immutable types later and explore more of the internal
workings of data types.

Exercise 1.12.1.1. * Write a tiny Python program numDict.py that makes a dictionary whose keys
are the words ’one’, ’two’, ’three’, and ’four’, and whose corresponding values are the numerical equivalents,
1, 2, 3, and 4 (ints, not strings). Include code to test the resulting dictionary by referencing several of the
definitions and printing the results.

1.12.2. Dictionaries and String Formatting. At the end of the main function in spanish2a.py
from the last section, two strings are constructed and printed. The expressions for the two strings include a
sequence of literal strings concatenated with interspersed values from a dictionary. There is a much neater,
more readable way to generate these strings. We will develop this in several steps. The first string could be
constructed and printed as follows:

numberFormat = "Count in Spanish: {one}, {two}, {three}, ..."
withSubstitutions = numberFormat.format(one=’uno’, two=’dos’, three=’tres’)
print(withSubstitutions)

There are several new ideas here!.
Note the form of the string assigned the name numberFormat: It has the English words for numbers in

braces where we want the Spanish definitions substituted.
The second line uses method calling syntax. You will see this in more detail at the beginning of the next

chapter. Strings and other objects have a special syntax for functions tightly associated with the particular
type of object. Such functions are called methods. In particular str objects have a method called format.
The syntax for methods

object.methodname(paramters)
has the object followed by a period followed by the method name, and further parameters in parentheses.

In the example above, the object is the string called numberFormat. The method is named format. The
parameters in this case are all keyword parameters. You have already seen keyword parameters sep and end
used in print function calls. In this particular application, the keywords are chosen to include all the words
that appear enclosed in braces in the numberFormat string.

When the string numberFormat has the format method applied to it with the given keyword parameters,
a new string is created with substitutions into the places enclosed in braces. The substitutions are just the
values given by the keyword parameters. Hence the printed result is

Count in Spanish: uno, dos, tres, ...

1.12. DICTIONARIES 34

Now we go one step further: The keyword parameters associate the keyword names with the values after the
equal signs. The dictionary from spanish2a.py includes exactly the same associations. There is a special
notation allowing such a dictionary to supply keyword parameters. Assuming dictionary is the Spanish
dictionary from spanish2a.py, the method call

numberFormat.format(one=’uno’, two=’dos’, three=’tres’)
returns the same string as

numberFormat.format(**dictionary)
The special syntax ** before the dictionary indicates that the dictionary is not to be treated as a single
regular parameter. Instead keyword arguments for all the entries in the dictionary effectively appear in its
place.

Below is a substitute for the main method in spanish2a.py. The whole revised program is in example
program spanish3.py.

def main():
dictionary = createDictionary()
numberFormat = "Count in Spanish: {one}, {two}, {three}, ..."
withSubstitutions = numberFormat.format(**dictionary)
print(withSubstitutions)
print("Spanish colors: {red}, {blue}, {green}, ...".format(**dictionary))

The string with the numbers is constructed in steps as discussed above. The printing of the string with the
Spanish colors is coded more concisely. There are not named variables for the format string or the resulting
formatted string. You are free to use either coding approach.

In general, use this syntax for the string format method with a dictionary, returning a new formatted
string:

formatString.format(**aDictionary)
where the format string contains dictionary keys in braces where you want the dictionary values substituted.
The dictionary key names must follow the rules for legal identifiers.

At this point we have discussed in some detail everything that went into the first sample program,
madlib.py, of Section 1.2.3! This is certainly the most substantial program so far.

Look at madlib.py again, see how we have used most of the ideas so far. If you want more description,
you might look at section 1.2.3 again (or for the first time): it should make much more sense now.

Exercise 1.12.2.1. To confirm your better understanding of madlib.py, load it in the editor, rename
it as myMadlib.py, and modify it to have a less lame story, with more and different entries in the dictionary.
Make sure addPick is called for each key in your format string. Test your version.

We will use madlib.py as a basis for more substantial modifications in structure in Section 2.3.3.

1.12.3. Dictionaries and Python Variables. Dictionaries are central to the implementation of
Python. Each variable identifier is associated with a particular value. These relationships are stored in
dictionaries in Python, and these dictionaries are accessible to the user: You can use the function call
locals() to return a dictionary containing all the current local variables names as keys and all their values
as the corresponding dictionary values. This dictionary can be used with the string format method, so you
can embed local variable names in a format string and use then very easily!

For example, run the example program arithDict.py:
’’’Fancier format string example, with locals().’’’

x = 20
y = 30
sum = x+y
prod = x*y
formatStr = ’{x} + {y} = {sum}; {x} * {y} = {prod}.’
equations = formatStr.format(**locals())
print(equations)

1.13. LOOPS AND SEQUENCES 35

Note the variable names inside braces in formatStr, and the dictionary reference used as the format pa-
rameter is **locals().

A string like formatStr is probably the most readable way to code the creation of a string from a
collection of literal strings and program values. The ending part of the syntax, .format(**locals()), may
appear a bit strange, but it is very useful! We will use this notation extensively to clearly indicate how
values are embedded into strings.

The example program hello_you4.py does the same thing as the earlier hello_you versions, but with
a dictionary reference:

person = input(’Enter your name: ’)
greeting = ’Hello {person}!’.format(**locals())
print(greeting)

1.13. Loops and Sequences

Modern computers can do millions or even billions of instructions a second. With the techniques discussed
so far, it would be hard to get a program that would run by itself for more than a fraction of a second.6
Practically, we cannot write millions of instructions to keep the computer busy. To keep a computer doing
useful work we need repetition, looping back over the same block of code again and again. There are two
Python statement types to do that: the simpler for loops, which we take up shortly, and while loops,
which we take up later, in Section 3.3. Two preliminaries: First, the value of already defined variables can be
updated. This will be particularly important in loops. We start by following how variables can be updated in
an even simpler situation. Second, for loops involve sequence types, so we will first look at a basic sequence
type: list. This is a long section. Go carefully.

1.13.1. Updating Variables. The programs so far have defined and used variables, but other than
in early shell examples we have not changed the value of existing variables. For now consider a particularly
simple example, just chosen as an illustration, in the example file updateVar.py:

x = 3 #1
y = x + 2 #2
y = 2*y #3
x = y - x #4
print(x, y) #5

Can you predict the result? Run the program and check. Particularly if you did not guess right, it is
important to understand what happens, one step at a time. That means keeping track of what changes to
variables are made by each statement. In the table below, statements are referred to by the numbers labeling
the lines in the code above. We can track the state of each variable after each line in executed. A dash is
shown where a variable is not defined. For instance after line 1 is executed, a value is given to x, but y is
still undefined. Then y gets a value in line 2. The comment on the right summarizes what is happening.
Since x has the value 3 when line 2 starts, x+2 is the same as 3+2. In line three we use the fact that the
right side of an assignment statement uses the values of variables when the line starts executing (what is
left after the previous line of the table executed), but the assignment to the variable y on the left causes a
change to y, and hence the updated value of y, 10, is shown in the table. Line 4 then changes x, using the
latest value of y (10, not the initial value 5!). The result from line 5 confirms the values of x and y.

Line x y comment
1 3 -
2 3 5 5=3+2, using the value of x from the previous line
3 3 10 10=2*5 on the right, use the value of y from the previous line
4 7 19 7=10-3 on the right, use the value of x and y from the previous line
5 7 10 print: 7 10

The order of execution will always be the order of the lines in the table. In this simple sequential code,
that also follows the textual order of the program. Following each line of execution of a program in order,
carefully, keeping track of the current values of variables, will be called playing computer. A table like the
one above is an organized way to keep track.

6It is possible with function recursion, but we will avoid that topic in this introduction.

1.13. LOOPS AND SEQUENCES 36

1.13.2. The list Type. Lists are ordered sequences of arbitrary data. Lists are the first kind of data
discussed so far that are mutable: the length of the sequence can be changed and elements substituted. We
will delay the discussion of changes to lists until a further introduction to objects. Lists can be written
explicitly. Read the following examples

[’red’, ’green’, ’blue’]
[1, 3, 5, 7, 9, 11]
[’silly’, 57, ’mixed’, -23, ’example’]
[] # the empty list

The basic format is square-bracket-enclosed, comma-separated lists of arbitrary data.

1.13.3. The range Function, Part 1. There is a built-in function range, that can be used to auto-
matically generate regular arithmetic sequences. Try the following in the Shell:

list(range(4))
list(range(10))

The general pattern for use is
range(sizeOfSequence)

This syntax will generate the items, one at a time, as needed. If you want to see all the results at once as a
list, you can convert to a list as in the examples above. The resulting sequence starts at 0 and ends before
the parameter. We will see there are good reasons to start from 0 in Python. One important property of
sequences generated by range(n) is that the total number of elements is n. The sequence omits the number
n itself, but includes 0 instead.

With more parameters, the range function can be used to generate a much wider variety of sequences.
The elaborations are discussed in Section 2.4.12 and Section 3.3.2.

1.13.4. Basic for Loops. Try the following in the Shell. You get a sequence of continuation lines
before the Shell responds. Be sure to indent the second and third lines. (This is only needed inthe Shell, not
in an edit window, where the indentation is automatic). Be sure to enter another empty line (just Enter)
at the end to get the Shell to respond.

for count in [1, 2, 3]:
print(count)
print(’Yes’ * count)

This is a for loop. It has the heading starting with for, followed by a variable name (count in this case), the
word in, some sequence, and a final colon. As with function definitions and other heading lines ending with
a colon, the colon at the end of the line indicates that a consistently indented block of statements follows to
complete the for loop.

for item in sequence:
indented statements to repeat

The block of lines is repeated once for each element of the sequence, so in this example the two lines in the
indented block are repeated three times. Furthermore the variable in the heading (count here) may be used
in the block, and each time through it takes on the next value in the sequence, so the first time through the
loop count is 1, then 2, and finally 3. Look again at the output and see that it matches this sequence.

There is a reason the interpreter waited to respond until after you entered an empty line: The interpreter
did not know how long the loop block was going to be! The empty line is a signal to the interpreter that
you are done with the loop block.

Look at the following example program for123.py, and run it.
for count in [1, 2, 3]: #1

print(count) #2
print(’Yes’*count) #3

print(’Done counting.’) #4
for color in [’red’, ’blue’, ’green’]: #5

print(color) #6

1.13. LOOPS AND SEQUENCES 37

In a file, where the interpreter does not need to respond immediately, the blank line is not necessary. Instead,
as with a function definition or any other format with an indented block, you indicate being past the indented
block by dedenting to line up with the for-loop heading. Hence in the code above, “Done Counting.” is
printed once after the first loop completes all its repetitions. Execution ends with another simple loop.

As with the indented block in a function, it is important to get the indentation right. Alter the code
above, so line 4 is indented:

for count in [1, 2, 3]: #1
print(count) #2
print(’Yes’*count) #3
print(’Done counting.’) #4

for color in [’red’, ’blue’, ’green’]: #5
print(color) #6

Predict the change, and run the code again to test.
Loops are one of the most important features in programming. While the syntax is pretty simple, using

them creatively to solve problems (rather than just look at a demonstration) is among the biggest challenges
for many learners at an introductory level. One way to simplify the learning curve is to classify common
situations and patterns. One of the simplest patterns is illustrated above, simple for-each loops.

for item in sequence
do some thing with item

(It would be even more like English if for were replace by for each, but the shorter version is the one used
by Python.)

In the for-loop examples above, something is printed that is related to each item in the list. Printing is
certainly one form of “do something”, but the possibilities for “do something” are completely general!

We can use a for-each loop to revise our first example. Recall the code from madlib.py:
addPick(’animal’, userPicks)
addPick(’food’, userPicks)
addPick(’city’, userPicks)

Each line is doing exactly the same thing, except varying the string used as the cue, while repeating the rest
of the line. This is the for-each pattern, but we need to list the sequence that the cues come from. Read the
alternative:

for cue in [’animal’, ’food’, ’city’]: # heading
addPick(cue, userPicks) # body

If you wish to see or run the whole program with this small modification, see the example madlibloop.py.
It is important to understand the sequence of operations, how execution goes back and forth between

the heading and the body. Here are the details:
(1) heading first time: variable cue is set to the first element of the sequence, ’animal’
(2) body first time: since cue is now ’animal’, effectively execute addPick(’animal’, userPicks)

(Skip the details of the function call in this outline.)
(3) heading second time: variable cue is set to the next element of the sequence, ’food’
(4) body second time: since cue is now ’food’, effectively execute addPick(’food’, userPicks)
(5) heading third time: variable cue is set to the next (last) element of the sequence, ’city’
(6) body third time: since cue is now ’city’, effectively execute addPick(’city’, userPicks)
(7) heading done: Since there are no more elements in the sequence, the entire for loop is done and

execution would continue with the statement after it.
This looping construction would be even handier if you were to modify the original mad lib example, and
had a story with many more cues. Also this revision will allow for further improvements in Section 2.3.3,
after we introduce more about string manipulation.

1.13.5. Simple Repeat Loops. The examples above all used the value of the variable in the for-loop
heading. An even simpler for-loop usage is when you just want to repeat the exact same thing a specific
number of times. In that case only the length of the sequence, not the individual elements are important.
We have already seen that the range function provides an ease way to produce a sequence with a specified
number of elements. Read and run the example program repeat1.py:

1.13. LOOPS AND SEQUENCES 38

for i in range(10):
print(’Hello’)

In this situation, the variable i is not used inside the body of the for-loop.
The user could choose the number of times to repeat. Read and run the example program repeat2.py:

n = int(input(’Enter the number of times to repeat: ’))
for i in range(n):

print(’This is repetitious!’)

1.13.6. Successive Modification Loops. Suppose I have a list of items called items, and I want to
print out each item and number them successively. For instance if items is [’red’, ’orange’, ’yellow’, ’green’],
I would like to see the output:

1 red
2 orange
3 yellow
4 green

Read about the following thought process for developing this:
If I allow myself to omit the numbers, it is easy: For any item in the list, I can process it with

print(item)
and I just go through the list and do it for each one. (Copy and run if you like.)

items = [’red’, ’orange’, ’yellow’, ’green’]
for item in items:

print(item)
Clearly the more elaborate version with numbers has a pattern with some consistency, each line is at least
in the form:

number item
but the number changes each time, and the numbers do not come straight from the list of items.

A variable can change, so it makes sense to have a variable number, so we have the potential to make it
change correctly. We could easily get it right the first time, and then repeat the same number. Read and
run the example program numberEntries1.py:

items = [’red’, ’orange’, ’yellow’, ’green’]
number = 1
for item in items:

print(number, item)
Of course this is still not completely correct, since the idea was to count. After the first time number is
printed, it needs to be changed to 2, to be right the next time through the loop, as in the following code:
Read and run the example program numberEntries2.py:

items = [’red’, ’orange’, ’yellow’, ’green’]
number = 1
for item in items:

print(number, item)
number = 2

This is closer, but still not completely correct, since we never get to 3! We need a way to change the value of
number that will work each time through the loop. The pattern of counting is simple, so simple in fact that
you probably do not think consciously about how you go from one number to the next: You can describe
the pattern by saying each successive number is one more than the previous number. We need to be able to
change number so it is one more than it was before. That is the additional idea we need! Change the last
line of the loop body to get the example program numberEntries3.py. See the addition and run it:

items = [’red’, ’orange’, ’yellow’, ’green’] #1
number = 1 #2
for item in items: #3

print(number, item) #4
number = number + 1 #5

1.13. LOOPS AND SEQUENCES 39

It is important to understand the step-by-step changes during execution. Below is another table showing
the results of playing computer. The line numbers are much more important here to keep track of the flow
of control, because of the jumping around at the end of the loop.

Line items item number comment
1 [’red’, ’orange’, ’yellow’, ’green’] - -
2 [’red’, ’orange’, ’yellow’, ’green’] - 1
3 [’red’, ’orange’, ’yellow’, ’green’] ’red’ 1 start with item as first in sequence
4 [’red’, ’orange’, ’yellow’, ’green’] ’red’ 1 print: 1 red
5 [’red’, ’orange’, ’yellow’, ’green’] ’red’ 2 2 = 1+1
3 [’red’, ’orange’, ’yellow’, ’green’] ’orange’ 2 on to the next element in sequence
4 [’red’, ’orange’, ’yellow’, ’green’] ’orange’ 2 print 2 orange
5 [’red’, ’orange’, ’yellow’, ’green’] ’orange’ 3 3=2+1
3 [’red’, ’orange’, ’yellow’, ’green’] ’yellow’ 3 on to the next element in sequence
4 [’red’, ’orange’, ’yellow’, ’green’] ’yellow’ 3 print 3 yellow
5 [’red’, ’orange’, ’yellow’, ’green’] ’yellow’ 4 4=3+1
3 [’red’, ’orange’, ’yellow’, ’green’] ’green’ 4 on to the last element in sequence
4 [’red’, ’orange’, ’yellow’, ’green’] ’green’ 4 print 4 green
5 [’red’, ’orange’, ’yellow’, ’green’] ’green’ 5 5=4+1
3 [’red’, ’orange’, ’yellow’, ’green’] ’green’ 5 sequence done, end loop and code

The final value of number is never used, but that is OK. What we want is printed.
This short example illustrates a lot of ideas:
• Loops may contain several variables.
• One way a variable can change is by being the variable in a for-loop heading, that automatically
goes through the values in the for-loop list.

• Another way to have variables change in a loop is to have an explicit statement that changes the
variable inside the loop, causing successive modifications.

There is a general pattern to loops with successive modification of a variable like number above:
(1) The variables to be modified need initial values before the loop (line 1 in the example above).
(2) The loop heading causes the repetition. In a for-loop, the number of repetitions is the same as the

size of the list.
(3) The body of the loop generally “does something” (like print above in line 4) that you want done

repeatedly.
(4) There is code inside the body of the loop to set up for the next time through the loop, where the

variable which needs to change gets transformed to its next value (line 5 in the example above).
This information can be put in a code outline:

Initialize variables to be modified
Loop heading controlling the repetition

Do the desired action with the current variables
Modify variables to be ready for the action the next time

If you compare this pattern to the for-each and simple repeat loops in Section 1.13.4, you see that the
examples there were simpler. There was no explicit variable modification needed to prepare for the next
time though the loop. We will refer to the latest, more general pattern as a successive modification loop.

Functions are handy for encapsulating an idea for use and reuse in a program, and also for testing. We
can write a function to number a list, and easily test it with different data. Read and run the example
program numberEntries4.py:

def numberList(items):
’’’Print each item in a list items, numbered in order.’’’
number = 1
for item in items:

print(number, item)
number = number + 1

1.13. LOOPS AND SEQUENCES 40

def main():
numberList([’red’, ’orange’, ’yellow’, ’green’])
print()
numberList([’apples’, ’pears’, ’bananas’])

main()
Make sure you can follow the whole sequence, step by step! This program has the most complicated flow of
control so far, changing both for function calls and loops.

(1) Execution start with the very last line, since the previous lines are definitions
(2) Then main starts executing.
(3) The first call to numberList effectively sets the formal parameter

items = [’red’, ’orange’, ’yellow’, ’green’]
and the function executes just like the flow followed in numberEntries3.py. This time, however,
execution returns to main.

(4) An empty line is printed in the second line of main.
(5) The second call to numberList has a different actual parameter [’apples’, ’pears’, ’bananas’],

so this effectively sets the formal parameter this time
items = [’apples’, ’pears’, ’bananas’]
and the function executes in a similar pattern as in numberEntries3.py, but with different data
and one less time through the loop.

(6) Execution returns to main, but there is nothing more to do.

1.13.7. Accumulation Loops. Suppose you want to add up all the numbers in a list, nums. Let us
plan this as a function from the beginning, so read the code below. We can start with:

def sumList(nums):
’’’Return the sum of the numbers in nums.’’’

If you do not see what to do right away, a useful thing to do is write down a concrete case, and think how
you would solve it, in complete detail. If nums is [2, 6, 3, 8], you would likely calculate

2+6 is 8
8 + 3 is 11
11 + 8 is 19
19 is the answer to be returned.

Since the list may be arbitrarily long, you need a loop. Hence you must find a pattern so that you can keep
reusing the same statements in the loop. Obviously you are using each number in the sequence in order.
You also generate a sum in each step, which you reuse in the next step. The pattern is different, however,
in the first line, 2+6 is 8: there is no previous sum, and you use two elements from the list. The 2 is not
added to a previous sum.

Although it is not the shortest way to do the calculation by hand, 2 is a sum of 0 + 2: We can make the
pattern consistent and calculate:

start with a sum of 0
0 + 2 is 2
2 + 6 is 8
8 + 3 is 11
11 + 8 is 19
19 is the answer.

Then the second part of each sum is a number from the list, nums. If we call the number from the list num,
the main calculation line in the loop could be

nextSum = sum + num

1.13. LOOPS AND SEQUENCES 41

The trick is to use the same line of code the next time through the loop. That means what was nextSum in
one pass becomes the sum in the next pass. One way to handle that is:

sum = 0
for num in nums:

nextSum = sum + num
sum = nextSum

Do you see the pattern? Again it is

initialization
loop heading

main work to be repeated
preparation for the next time through the loop

Sometimes the two general loop steps can be combined. This is such a case. Since nextSum is only used
once, we can just substitute its value (sum) where it is used and simplify to:

sum = 0
for num in nums:

sum = sum + num

so the whole function, with the return statement is:

def sumList(nums): #1
’’’Return the sum of the numbers in nums.’’’
sum = 0 #2
for num in nums: #3

sum = sum + num #4
return sum #5

With the following (not indented) line below used to test the function, you have the example program
sumNums.py. Run it.

print(sumList([5, 2, 4, 7]))

The pattern used here is certainly successive modification (of the sum variable). It is useful to give a more
specialized name for this version of the pattern here. It follows an accumulation pattern:

initialize the accumulation to include none of the sequence (sum = 0 here)
for item in sequence :

new value of accumulation = result of combining item with last value of accumulation

This pattern will work in many other situations besides adding numbers.

Exercise 1.13.7.1. * Suppose the function sumList, is called with the parameter [5, 2, 4, 7]. Play
computer on this call. Make sure there is a row in the table for each line executed in the program, each
time it is executed. In each row enter which program line is being executed and show all changes caused to
variables by the execution of the line. A table is started for you below. The final line of your table should
be for line 5, with the comment, “return 18”. If you do something like this longhand, and the same long
value repeats a number of times, it is more convenient to put a ditto (“) for each repeated variable value or
even leave it blank. If you want to do it on a computer you can start from the first table in example file
playComputerSumStub.rtf. First save the file as playComputerSum.rtf.

1.13. LOOPS AND SEQUENCES 42

Line nums sum num comment
1 [5, 2, 4, 7] - -
2

Exercise 1.13.7.2. * Write a program testSumList.py which includes a main function to test the
sumList function several times. Include a test for the extreme case, with an empty list.

Exercise 1.13.7.3. ** Complete the following function. This starting code is in joinAllStub.py. Save
it to the new name joinAll.py. Note the way an example is given in the documentation string. It simulates
the use of the function in the Shell. This is a common convention:

def joinStrings(stringList):
’’’Join all the strings in stringList into one string,
and return the result. For example:

>�>�> print(joinStrings([’very’, ’hot’, ’day’]))
’veryhotday’
’’’

Hint1: 7 Hint2: 8

1.13.8. More Playing Computer. Testing code by running it is fine, but looking at the results does
not mean you really understand what is going on, particularly if there is an error! People who do not
understand what is happening are likely to make random changes to their code in an attempt to fix errors.
This is a very bad, increasingly self-defeating practice, since you are likely to never learn where the real
problem lies, and the same problem is likely to come back to bite you.

It is important to be able to predict accurately what code will do. We have illustrated playing computer
on a variety of small chunks of code.

Playing computer can help you find bugs (errors in your code). Some errors are syntax errors caught by
the interpreter in translation. Some errors are only caught by the interpreter during execution, like failing
to have a value for a variable you use. Other errors are not caught by the interpreter at all – you just get
the wrong answer. These are called logical errors. Earlier logical errors can also trigger an execution error
later. This is when playing computer is particularly useful.

A common error in trying to write the numberList function would be to have:
def numberList(items): # WRONG code for illustration!!!! #1

’’’Print each item in a list items, numbered in order.’’’ #2
for item in items: #3

number = 1 #4
print(number, item) #5
number = number + 1 #6

You can run this code in numberEntriesWRONG.py and see that it produces the wrong answer. If you play
computer on the call to numberList([’apples’, ’pears’, ’bananas’]), you can see the problem:

7This is a form of accumulation, but not quite the same as adding numbers.
8“Start with nothing accumulated” does not mean 0, here. Think what is appropriate.

1.13. LOOPS AND SEQUENCES 43

Line items item number comment
1 [’apples’, ’pears’, ’bananas’] - - pass actual parameter value to items
3 [’apples’, ’pears’, ’bananas’] ’apples’ - start with item as first in sequence
4 [’apples’, ’pears’, ’bananas’] ’apples’ 1
5 [’apples’, ’pears’, ’bananas’] ’apples’ 1 print: 1 apples
6 [’apples’, ’pears’, ’bananas’] ’apples’ 2 2 = 1+1
3 [’apples’, ’pears’, ’bananas’] ’pears’ 2 on to the next element in sequence
4 [’apples’, ’pears’, ’bananas’] ’apples’ 1
5 [’apples’, ’pears’, ’bananas’] ’pears’ 1 print: 1 pears OOPS!

If you go step by step you should see where the incorrect 1 came from: the initialization is repeated each
time in the loop at line 4, undoing the incrementing of number in line 6, messing up your count. Always be
careful that your one-time initialization for a loop goes before the loop, not in it!

Functions can also return values. Consider the Python for this mathematical sequence: define the
function m(x) = 5x, let y = 3; find m(y) + m(2y-1).

def m(x): #1
return 5*x #2

y = 3 #3
print(m(y) + m(2*y-1)) #4

A similar example was considered in Section 1.11.6, but now add the idea of playing computer and recording
the sequence in a table. Like when you simplify a mathematical expression, Python must complete the
innermost parts first. Tracking the changes means following the function calls carefully and using the values
returned. Again a dash ’-’ is used in the table to indicate an undefined variable. Not only are local variables
like formal parameters undefined before they are first used, they are also undefined after the termination of
the function,

Line x y comment
3 - 3 (definitions only before this line)
4 - 3 start on: print m(y) + m(2*y-1); find m(y), which is m(3)
1 3 3 pass 3 to function m, so x =3
2 3 3 return 5*3 = 15
4 - 3 substitute result: print 15 + m(2*y-1), find m(2*y-1), which is m(2*3-1) = m(5)
1 5 3 pass 5 to function m, so x=5
2 5 3 return 5*5 = 25
4 - 3 substitute result: print 15 + 25, so calculate and print 40

Thus far most of the code given has been motivated first, so you are likely to have an idea what to
expect. You may need to read code written by someone else (or even yourself a while back!) where you are
not sure what is intended. Also you might make a mistake and accidental write code that does something
unintended! If you really understand how Python works, one line at a time, you should be able to play
computer and follow at least short code sequences that have not been explained before. It is useful to read
another person’s code and try to follow it. The next exercises also provides code that has not been explained
first:or has a mistake.

Exercise 1.13.8.1. ** Play computer on the following code. Reality check: 31 is printed when line 6
finally executes. Table headings are shown below to get you started with a pencil. Alternately you can work
in a word processor starting from playComputerStub.rtf, which has tables set up for this and the following
exercise. Save the file with an alternate name playComputer.rtf.

x = 0 #1
y = 1 #2
for n in [5, 4, 6]: #3

x = x + y*n #4
y = y + 1 #5

print(x) #6

1.13. LOOPS AND SEQUENCES 44

Line x y n Comment

Exercise 1.13.8.2. ** The following code is supposed to compute the product of the numbers in a list.
For instance product([5, 4, 6]) should calculate and return 5*4*6=120 in steps, calculating 5, 5*4=20
and 20*6=120 . Play computer on a call to product([5, 4, 6]) until you see that it makes a mistake. This
code appears in the example file numProductWrong.py. Save it as numProduct.py and fix the error (and
save again!). Table headings and the first row are shown below to get you started with a pencil. Alternately
you can work in a word processor continuing to add to playComputer.rtf, started in the previous exercise.

def product(nums): #1
for n in nums: #2

prod = 1 #3
prod = prod*n #4

return prod #5

Line nums n prod Comment
1 [5, 4, 6] - -

Exercise 1.13.8.3. ** Play computer on the following code. Table headings are shown for you. Reality
check: 70 is printed. See the previous exercises if you enter your answer in a file.

def f(x): #1
return x+4 #2

print(f(3)*f(6)) #3

Line x Comment

1.13.9. The print function end keyword. By default the print function adds a newline to the end
of the string being printed. this can be overridden by including the keyword parameter end. The keyword
end can be set equal to any string. The most common replacements are the empty string or a single blank.
If you also use the keyword parameter sep, these keyword paramters may be in either order, but they msut
come at the end of the parmater list. Read the illustrations:

print(’all’, ’on’, ’same’, ’line’)
print(’different line’)

is equivalent to
print(’all’, ’on’ , end = ’ ’)
print(’same’, end = ’ ’)
print(’line’)
print(’different line’)

This does not work directly in the shell (where you are always forced to a new line at the end). It does work
in a program, but it is not very useful except in a loop! Suppose I want to print a line with all the elements
of a list, separated by spaces, but not on separate lines. I can use the end keyword set to a space in the
loop. Can you figure out in your head what this example file endSpace1.py does? Then try it:

def listOnOneLine(items):
for item in items:

print(item, end=’ ’)

listOnOneLine([’apple’, ’banana’, ’pear’])
print(’This may not be what you expected!’)

If you still want to go on to a new line at the end of the loop, you must include a print function that does
advance to the next line, once, after the loop. Try this variation, endSpace2.py

1.14. DECIMALS, FLOATS, AND FLOATING POINT ARITHMETIC 45

def listOnOneLine(items):
for item in items:

print(item, end=’ ’)
print()

listOnOneLine([’apple’, ’banana’, ’pear’])
print(’This is probably better!’)

1.14. Decimals, Floats, and Floating Point Arithmetic

Floating point numbers like 12.345 are a basic type, but there are some complications due to their
inexactness. This section may be deferred until you actually need numbers other than integers.

1.14.1. Floats, Division, Mixed Types. As you moved on in school after your first integer division,
and did fractions and decimals, you probably thought of 6/8 as a fraction and could convert to a decimal
.75. Python can do decimal calculations, too, approximately.

Try all set-off lines in this section in the Shell:
6/8
6/3
2.3/25.7

There is more going on here than meets the eye. As you should know, decimal representations of values can
be a pain. They may not be able to be expressed with a finite number of characters. Try

2/3
Also, as you may have had emphasized in science class, real number measurements are often not exact, and
so the results of calculations with them are not exact. In fact there are an infinite number of real number
just between 0 and 1, and a computer is finite. It cannot store all those numbers exactly! On the other hand,
Python does store integers exactly (well at least far past the number of atoms in the universe – eventually
even integers could get too big to store in a computer). The difference in the way integers and decimals are
stored and processed leads to decimals and integers being different types in Python. Try

type(3.5)
Note that 3.5 is of type ’float’, not ’decimal’. There are several reasons for that name having to do with the
actual way the type is stored internally. “Decimal” implies base ten, our normal way for writing numbers
with ten digits 0,1,2,3,4,5,6,7,8,9. Computers actually use base two, with only two symbols 0,1. (Did you
note what symbols were in the machine language in Section 1.1?) Also floats use an encoding something like
scientific notation from science class, with exponents that allow the decimal point to move or “float”, as in
the decimal case: 2345.6 = (2.3456)103

Try
type(-2)
type(-2.0)

Even a number that is actually an integer can be represented in the float type if a decimal point is included.
Always be sure to remember that floats may not be exact. The use of base two makes this true even in

cases where decimal numbers can be expressed exactly! More on that at the end of this section on formatting
floats.

It is sometimes important to know the numeric type of a Python value. Any combination of +, -, and *
with operands of type int produces an int. If there is an operation /, or if any operand is of type float, the
result is float. Try each in the Shell (and guess the resulting type):9

3.3 - 1.1
2.0 + 3
2.5*2

9Python 3.1 does what you would expect mathematically with an expression like
(1/2)*6.5

Caution: This is not the case in other common languages like Java and C++ (or with versions of Python before 3.0). They
treat the / operation with integers like the current Python //, so the result of the expression above is 0!

1.14. DECIMALS, FLOATS, AND FLOATING POINT ARITHMETIC 46

1.14.2. Exponentiation, Square Roots. Exponentiation is finding powers. In mathematical nota-
tion, (3)(3)(3)(3) = 34 = 81. In Python there is no fancy typography with raised exponent symbols like the
4, so Python uses ** before a power: Try in the Shell:

3**4
5*2**3

If you expected 1000 for the second one, remember exponentiation has even higher precedence than multi-
plication and division: 2**3 is 2*2*2 or 8, and 5*8 is 40.

Exponents do not need to be integers. A useful example is the 0.5 power: it produces a square root. Try
in the Shell:

9**.5
2**.5

The result of a power operation is of int type only if both parameters are integers and the correct result is
an integer.

1.14.3. String Formats for Float Precision. You generally do not want to display a floating point
result of a calculation in its raw form, often with an enormous number of digits after the decimal point, like
23.457413902458498. You are likely to prefer rounding it to something like 23.46. There are two approaches.

First there is a format function (not method) with a second parameter allowed to specialize the formatting
of objects as strings.. Read the following example interpreter sequence showing possibilites when a float is
being formatted:

>�>�> x = 23.457413902458498
>�>�> format(x, ’.5f’)
>�>�> ’23.45741’
>�>�> format(x, ’.2f’)
>�>�> ’23.46’

Note that the results are rounded not truncated: the result to two places is 23.46, not 23.45. The formatting
string ’.5f’ means after the decimal point round to 5 places. Similarly ’.2f’ means round to two decimal
places.

This rounding notation can also be placed after a colon inside the braces of format strings, for use with
the string format method. Read the Shell session:

>�>�> x = 2.876543
>�>�> ’longer: {x:.5f}, shorter: {x:.3f}.’.format(**locals())
>�>�> ’longer: 2.87654, shorter: 2.877.’

The colon separates the symbol identifying what value to use for the substitution from the instructions for
the specific formating method.

The colon and formatting instructions can also be used with the format versions depending on the order
of the parameters. Continuing the earlier Shell example:

>�>�> ’No dictionary: {:.5f}.’.format(x)
>�>�> ’No dictionary: 2.87654.’

There are many more fancy formatting options for the string format method that we will not discuss.
Going to the opposite extreme, and using formatting with many digits, you can check that Python does

not necessarily remember simple decimal numbers exactly:
>�>�> format(.1, ’.20f’)
’0.10000000000000000555’
>�>�> format(.2, ’.20f’)
’0.20000000000000001110’
>�>�> format(.1 + .2, ’.20f’)
’0.30000000000000004441’
>�>�> format(.3, ’.20f’)
’0.29999999999999998890’
>�>�>

1.15. SUMMARY 47

Python stores the numbers correctly to about 16 or 17 digits. You may not care about such slight errors,
but you will be able to check in Chapter 3 that if Python tests the expressions .1 + .2 and .3 for equality,
it decides that they are not equal! In fact, as you can see above, the approximations that Python stores for
the two expressions are not exactly equal. Do not depend on the exactness of floating point arithmetic, even
for apparently simple expressions!

The floating point formatting code in this section is also in example program floatFormat.py.

Exercise 1.14.3.1. * Write a program, discount.py, that prompts the user for an original price and
for a discount percentage and prints out the new price to the nearest cent. For example if the user enters
2.89 for the price and 20 for the discount percentage, the value would be (1- 20/100)*2.89, rounded to two
decimal places, 2.31. For price .65 with a 25 percent discount, the value would be (1- 25/100)*.65, rounded
to two decimal places, .49.10 Write the general calculation code following the pattern of the calculations
illustrated in the two concrete examples.

1.15. Summary

Section numbers in square brackets indicate where an idea was first discussed.
Where Python syntax is illustrated, the typeface indicates the the category of each part:

Typeface Meaning
Typewriter font Text to be written verbatim

Emphasized A place where you can use an arbitrary identifier. The emphasized text attempts to
be descriptive of the meaning of the identifier in the current context.

Normal text A description of what goes in that position, without giving explicit syntax
If there are several variations on a particular part of the syntax, alternatives will be show on successive

lines.
To emphasize the successive parts of the syntax, space will generally be left around symbol and punctu-

ation characters, but the space is not required in actual use.
(1) Python Shell

(a) A Shell window may be opened from the Idle menu: Run -> Python Shell [1.2.5]
(b) Entering commands:

(i) Commands may be entered at the >�>�> prompt. [1.4.1]
(ii) If the Shell detects that a command is not finished at the end of the line, a continuation

line is shown with no >�>�>. [1.4.2]
(iii) Statements with a heading ending in a colon followed by an indented block, must be

terminated with an empty line. [1.13.4]
(iv) The Shell evaluates a completed command immediately, displaying any result other than

None, starting on the next line. [1.4.1]
(v) The Shell remembers variable and function names. [1.6]

(c) An earlier Shell line may to copied and edited by clicking anywhere in the previously displayed
line and then pressing Enter.

(2) Idle editing
(a) Start a new window from the File menu by selecting New, Open..., or Recent Files. [1.9.1]
(b) Make your Python file names explicitly end with ’.py’ [1.6.1]

(3) To run a program from an Idle Editor Window:
(a) Select Run -> Run Module or press function key F5. The program runs in the Shell window,

after resetting the shell so all old names are forgotten. [1.9.1]
(i) If the program is expecting keyboard input, the text cursor should appear at the end of

the Shell history. If you somehow move the cursor elsewhere, you must explicitly move
it back. [1.9]

10In Python 3.0+, the previous expressions make sense, but in earlier versions of Python and in other languages like C++
and Java, where there are not separate division operators // and /, these expressions would be wrong because of the multiple
meanings of the operator / with different types. The expressions would work in these other languages if, for example, 100 were
replaced by 100.0.

1.15. SUMMARY 48

(ii) BUG WORKAROUND: If you were running a program that was expecting keyboard
input when you terminated it to start the latest run, you will need to start by pressing
the Enter key once or maybe twice to clear the old pending wait for input. [1.9.2]

(iii) Press Ctrl-C to stop a running program in a long or infinite loop.
(iv) After a program terminates, the Shell remembers function definitions and variable names

define outside of any function. [1.11.2]
(4) Errors come in three categories:

(a) Syntax errors: text that the interpreter recognizes as illegal when first reading it. This prevents
execution of your code. Python lets you know where it realized there was an error. Sometimes
this is the exact location, but the actual error could be anywhere earlier, often on the previous
line. [1.6]

(b) Execution errors: The first illegal action is detected while running your command or program.
The source of the error could be in the line where execution fails, or it could be an earlier
logical error that only later forces an execution error. [1.6]

(c) Logical errors: When Python detects nothing illegal, but you do not get the results you desire.
These errors are the hardest to trace down. Playing computer and additional print functions
help. [1.13.8]

(5) Type int, (short for integer):
(a) Literal integer values may not contain a decimal point. [1.14.1]
(b) Integers may be arbitrarily large and are stored exactly. [1.14.1]
(c) Integers have normal operations, with usual precedence (highest listed first):

(i) **: exponentiation (5**3 means 5*5*5) [1.14.2]
(ii) *, /,//, %: multiplication, division with float result, integer division (ignoring any re-

mainder), just the remainder from division [1.4.3]
(iii) +, -: addition, subtraction [1.4.1]

(6) Type float, (short for floating point): approximations of real numbers
(a) Literal values must contain a decimal point to distinguish them from the int type [1.14.1]
(b) Approximates a wide range of values [1.14.1]
(c) Does not dependably store numbers exactly – even numbers with simple decimal representation

[1.14.1]
(d) Has the same operation symbols as for integers [1.14.1]
(e) A mixed binary operation with an integer and a float produces a float result. [1.14.1]

(7) Type str, (short for string):
Literal values contain a sequence of characters enclosed in matching quotes.
(a) Enclosed in ’or ": The string must be on one line. [1.5.1]
(b) Enclosed in ’’’or """: The string may include multiple lines in the source file. [1.8.1]
(c) Escape codes inside literals include \’ for a single quote and \n for a newline. [1.8.2]
(d) Binary operations (operation symbols have the same precedence order as when the symbols

are used in arithmetic)
(i) stringExpression1 + stringExpression2

concatenation (running together) of the two strings [1.5.2]
(ii) stringExpression * integerExpression

integerExpression * stringExpression
Repeat the string the number of times given by the integer expression. [1.5.2]

(e) string format method:
(i) stringFormatExpression.format(parameter0, parameter1, parameter2, ...) [1.10.4]

where stringFormatExpression is any string with an arbitrary number of formatted sub-
stitutions in it. Formatted substitutions are enclosed in braces. A digit inside the braces
will indicate which parameter value is substituted, counting from 0. If digits are left out,
the format paramters are substituted in order. The expression inside the braces can end
with a colon (:) followed by a format specifying string such as:
.#f where # can be a non negative integer: substitute a numerical value rounded to the
specified number of places beyond the decimal point. [1.14.1]

1.15. SUMMARY 49

Example: ’A word: {}, a number: {}, a formatted number: {:.3f}.’.format(’Joe’,
23, 2.13579)
evaluates to: ’A word: Joe, a number: 23, a formatted number: 2.136.’

(ii) stringFormatExpression.format(**dictionary) The format expressions are the same
as above except that a key name from a dictionary appears inside the braces instead of
a digit. The dictionary referenced appears int he parameter list preceded by **. The
value to be substituted is then taken from the dictionary by accessing the key. Example:
If defs is a dictionary with defs[’name’] equaling ’Joe’, defs[’num’] equaling 23,
defs[’dec’] equaling 2.13579, then
’A word: {name}, a number: {num}, a formatted number: {dec:.3f}.’.format(**defs)
evaluates to the same string as in the previous example. [1.12.2]

(f) Strings are a kind of sequence.
(8) Type list

[expression , expression , and so on]
[expression]
[]
(a) A literal list consists of a comma separated collection of values all enclosed in square brackets.

There may be many, one, or no elements in the list. [1.13.2]
(b) A list is a kind of sequence, so it may be used as the sequence in a for-statement heading.

[1.13.4]
(9) Type dict (short for dictionary)

dict()
returns an empty dictionary
(a) A dictionary provides an association of each key to its value. The key can be any immutable

type, with includes numbers and strings. [1.12.1]
(b) dictName [keyExpression] = valueExpression

associates in the dictionary dictName the key derived from evaluating keyExpression with the
value derived from evaluating valueExpression. [1.12.1]

(c) Used in an expression, dictName [keyExpression] evaluates to the value in the dictionary
dictName coming from the key obtained by evaluating keyExpression. [1.12.1]

(10) Type of None: This literal value has its own special type. None indicates the absence of a regular
object.

(11) Identifiers
(a) Identifiers are names for Python objects [1.6.1]
(b) They may only contain letters, digits, and the underscore, and cannot start with a digit. They

are case sensitive. [1.6.1]
(c) You cannot use a reserved word as an identifier, nor are you recommended to redefine an

identifier predefined by Python. In the Idle editor you are safe if your identifier names remain
colored black. [1.6.1]

(d) By convention, multi-word identifiers either [1.6.1]
(i) use underscores in place of blanks (since blanks are illegal is identifiers), as in initial_account_balance
(ii) use camelcase: all lowercase except for the starting letter of the second and later words,

as in initialAccountBalance
(12) Variables are identifiers used to name Python data [1.6]

(a) When a variable is used in an expression, its latest value is substituted. [1.6]
(13) Statements

(a) Assignment statement: [1.6]
variable = expression

(i) The expression on the right is evaluated, using the latest values of all variables, and
calculating all operations or functions specified.

(ii) The expression value is associated with the variable named on the left, removing any
earlier association with the name.

(b) For-statement
for item in sequence :

1.15. SUMMARY 50

consistently indented statement block, which may use the variable item

For each element in the sequence, repeat the statement block substituting the next element
in the sequence for the name variable name item. See Programming Patterns for patterns of
use. [1.13.4]

(c) Return statement
return expression
This is used only in a function definition, causing the function to immediately terminate and
return the value of expression to the calling code, effectively acting as if the function call was
replaced by this returned value. [1.11.6]

(14) Function calls
functionName (expression, expression, and so on)
(a) The number of expressions must correspond to a number of parameters allowed by the func-

tion’s definition. [1.11.4]
(b) Even if there are no parameters, the parentheses must be included to distinguish the name of

the function from a request to call the function. [1.11.2]
(c) Each expression is evaluated and the values are passed to the code for the function, which

executes its defined steps and may return a value. If the function call was a part of a larger
expression, the returned value is used to evaluate the larger expression in the place where the
function call was. [1.11.4]

(d) If nothing is returned explicitly, the function returns None.
(e) Function calls may also be used as statements, in which case any value that is returned is

ignored (except if entered directly into the shell, which prints any returned value other than
None).

(f) Keyword arguments are a special case. They have been used optionally at the end of the
parameter list for print.

(15) Functions that are built-in
(a) Print function: [1.7] [1.13.9]

print(expression)
print(expression, expression, expression)
print(expression, expression, expression, sep=stringVal, end=strVal)
print()

(i) Print the value of each expression in the list to the standard place for output (usually
the screen) separating each value by individual blanks unless the keyword argument sep
is specified to change it. There can be any number of expressions (not just 1 or 3 as
illustrated)

(ii) The string printed ends with a newline unless the keyword argument end is specified to
change it.

(iii) With no expression, the statement only advances to a new line.
(b) Type names can be used as function to do obvious conversions to the type, as in int(’234’),

float(123), str(123). [1.10.3]
(c) type(expression)

Return the type of the value of the expression. [1.5.1]
(d) input(promptString)

Print the promptString to the screen; wait for the user to enter a line from the keyboard,
ending with Enter. Return the character sequence as a string [1.10.1]

(e) len(sequence)
Return the number of elements in the sequence [1.3]

(f) range(expression)
Require expression to have a non negative integer value, call it n. Generate a sequence with
length n, consisting of the numbers 0 through n-1. For example range(4) generates the
sequence 0, 1, 2, and 3 [1.13.3]

(g) max(expression1, expression2, and so on)
Return the maximum of all the expressions listed. [1.3]

1.15. SUMMARY 51

(h) format(expression, formatString) [1.14.1]
If expression is numeric, the format string can be in the form ’.#f’, where the # gets replaced
by a nonnegative integer, and the result is a string with the value of the expression rounded
to the specified number of digits beyond the decimal point.

(16) Functions defined by a user:
def functionName (parameter1, parameter2, and so on) :

consistently indented statement block, which may include a return statement
(a) There may be any number of parameters. The parentheses must be included even if there are

no parameters. [1.11.4]
(b) When a function is first defined, it is only remembered: its lines are not executed. [1.11.2]
(c) When the function is later called in other code, the actual parameters in the function call are

used to initialize the local variables parameter1, parameter2, and so on in the same order as
the actual parameters. [1.11.4]

(d) The local variables of a function are independent of the local names of any function defined
outside of this function. The local variables must be initialized before use, and the names lose
any association with their values when the function execution terminates. [1.11.8]

(e) If a return statement is reached, any further statements in the function are ignored. [1.11.6]
(f) Functions should be used to :

(i) Emphasize that the code corresponds to one idea and give an easily recognizable name.
[1.11.2]

(ii) Avoid repetition. If a basic idea is repeated with just the data changing, it will be easier
to follow and use if it is coded once as a function with parameters, that gets called with
the appropriate actual parameters when needed. [1.11.4]

(iii) It is good to separate the internal processing of data from the input and output of data.
This typically means placing the processing of data and the return of the result in a
function. [1.11.4]

(iv) Separate responsibilities: The consumer of a function only needs to know the name,
parameter usage, and meaning of any returned value. Only the writer of a function
needs to know the implementation of a function. [1.11.7]

(17) Modules (program files)
(a) A module may start with a documentation string. [1.9.4]
(b) Define your functions in your module. If the module is intended as a main program called only

one way, a convention is make your execution just be calling a function called main. [1.11.3]
(c) Avoid defining variable outside of your functions. Names for constant (unchanging) values are

a reasonable exception. [1.11.9]
(18) Documentation String: A string, often a multi-line (triple quoted) string that may appear in two

places:
(a) At the very beginning of a file: This should give overall introductory information about the

file [1.9.4]
(b) As the very first entry in the body of a function: This should describe: [1.12.1]

(i) The return value of the function (if there is one)
(ii) Anything about the parameters that is not totally obvious from the names
(iii) Anything about the results from the function that is not obvious from the name

(19) Programming Patterns
(a) Input-calculate-Output: This is the simplest overall program model. First obtain all the data

you need (for instance by prompting the user for keyboard input). Calculate what you need
from this data. Output the data (for instance to the screen with print functions). [??]

(b) Repetitive patterns: These patterns are all associated with loops. Loops are essential if the
number of repetitions depends on dynamic data in the program. Even if you could avoid a
loop by repeating code, a loop is usually a better choice to make the repetitive logic of your
program clear to all.

(i) Exact repetition some number of times: If the number of time to repeat is n:
for i in range(n):

actions to be repeated

1.15. SUMMARY 52

Here the variable i is included only because there must be a variable name in a for-loop.
[1.13.5]

(ii) For-each loop: Do the same sort of thing for each item in a specified sequence. [1.13.4]
for item in sequence :

actions to be done with each item
(iii) Successive modification loop: Repeat a basic idea, but where the data involved each

time changes via a pattern that is coded in the loop to convert the previous data into
the data needed the next time through the loop [1.13.6]:

initialize all variables that will be successively modified in the loop
loop heading for the repetition :

actions to be in each loop with the current variable values
modify the variable values to prepare for the next time through the loop

(iv) Accumulation loop: A sequence of items need to be combined. This works where the
accumulation of all the items can be approached incrementally, combining one after
another with the accumulation so far [1.13.7]:

initialize the accumulation to include none of the sequence
for item in sequence :

new value of accumulation =
result of combining item with last value of accumulation

(20) Playing computer: testing that you understand your code (and it works right or helping you find
where it goes wrong) [1.13.1,1.13.6, 1.13.8]
(a) Make sure line numbers are labeled
(b) Make a table with heading for line numbers, all variables that will be changing, and comments
(c) Follow the order of execution, one statement at a time, being careful to update variable values

and only use the latest variable values, and carefully following the flow of control through
loops and into and out of function calls.

CHAPTER 2

Objects and Methods

2.1. Strings, Part III

2.1.1. Object Orientation. Python is an object-oriented language. Every piece of data and even func-
tions and types are objects. The term object-oriented is used to distinguish Python from earlier languages,
classified as procedural languages, where types of data and the operations on them were not connected in the
language. The functions we have used so far follow the older procedural programming syntax. In the newer
paradigm of object-oriented programming, all data are in objects, and a core group of operations that can
be done on some particular type of object are tightly bound to the object and called the object’s methods.

For example, strings are objects, and strings “know how” to produce an uppercase version of themselves.
Try in the Shell:

s = ’Hello!’
s.upper()

Here upper is a method associated with strings. This means upper is a function that is bound to the string
before the dot. This function is bound both logically, and as we see in the new notation, also syntactically.
One way to think about it is that each type of data knows operations (methods) that can be applied to it.
The expression s.upper() calls the method upper that is bound to the string s and returns a new uppercase
string result based on s.

Strings are immutable, so no string method can change the original string, it can only return a new
string. Confirm this by entering each line individually in the Shell to see the original s is unchanged:

s
s2 = s.upper()
s2
s

We are using the new object syntax:
object.method()

meaning that the method associated with the object’s type is applied to the object. This is just a special
syntax for a function call with an object.

Another string method is lower, analogous to upper, but producing a lowercase result.

Test yourself : How would you write the expression to produce a lowercase version of the string s? An-
swer:1 Try it in the Shell.

Test yourself in the Shell: How would you use this string s and both the lower and upper methods to
create the string ’hello!HELLO!’ ? Hint: 2 Answer: 3

Many methods also take additional parameters between the parentheses, using the more general syntax
object.method(parameters)

The first of many such methods we will introduce is count:
Syntax for count:

1s.lower()
2Use a plus sign to concatenate the pieces.
3s.lower() + s.upper()

53

2.1. STRINGS, PART III 54

s.count(sub)

Count and return the number of repetitions of a string sub that appear as substrings inside the string s.
Read and make sure you see the answers are correct:

>�>�> tale = ’This is the best of times.’
>�>�> tale.count(’i’)
3
>�>�> tale.count(’is’)
2
>�>�> tale.count(’That’)
0
>�>�> tale.count(’ ’)
5

There is a blank between the quotes in the line above. Blanks are characters like any other (except you can’t
see them)!

Just as the parameter can be replaced by a literal or any expression, the object to which a method is
bound with the dot may also be given by a literal, or a variable name, or any expression that evaluates to
the right kind of object in its place. This is true for any method call.

Technically the dot between the object and the method name is an operator, and operators have different
levels of precedence. It is important to realize that this dot operator has the highest possible precedence.
Read and see the difference parentheses make in the expressions:

>�>�> ’hello ’ + ’there’.upper()
’hello THERE’
>�>�> (’hello ’ + ’there’).upper()
’HELLO THERE’

To see if you understand this precedence, predict the results of each line and then test in the Shell:
3 * ’X’.count(’XXX’)
(3 * ’X’).count(’XXX’)

There are 0 ’XXX’s in ’X’, but 1 ’XXX’ in ’XXX’.
Python lets you see all the methods that are bound to an object (and any object of its type) with the

built-in function dir. To see all string methods, supply the dir function with any string. For example, try
in the Shell:

dir(’’)

Many of the names in the list start and end with two underscores, like __add__. These are all associated
with methods and pieces of data used internally by the Python interpreter. You can ignore them for now.
The remaining entries in the list are all user-level methods for strings. You should see lower and upper
among them. Some of the methods are much more commonly used than others.

Object notation
object.method(parameters)

has been illustrated so far with just the object type str, but it applies to all types. Later in the tutorial
methods such as the following will be discussed:

If seq is a list, seq.append(element) appends element to the end of the list.
If myData is a file, myData.read() will read and return the entire contents of the file....

2.1.2. String Indices. A string is a sequence of smaller components (individual characters), and it is
often useful to deal with parts of strings. Python indexes the characters in a string, starting from 0, so for
instance, the characters in the string ’computer’ have indices:

character c o m p u t e r
index 0 1 2 3 4 5 6 7

Each index is associated with a character, and you reference the individual characters much like in a
dictionary. Try the following. (You can skip the comments that make the indices explicit.) Enter in the
Shell:

2.1. STRINGS, PART III 55

01234567
s = ’computer’
s[0]
s[5]
s[8]

You cannot refer directly to a character that is not there. Indices only go to 7 in the example above.
Recall the len function, which gives the length of a sequence. It works on strings. Guess the following

value, and test in the Shell:
len(s)

A common error is to think the last index will be the same as the length of the string, but as you saw above,
that leads to an execution error. If the length of some string is 5, what is the index of its last character?
What if the length is 35?

Hopefully you did not count by ones all the way from 0. The indices for a string of length n are the
elements of the sequence range(n), which goes from 0 through n-1, or the length of the string minus one,
which is 5-1=4 or 35-1 = 34 in these examples.

Sometimes you are interested in the last few elements of a string and do not want to do calculations like
this. Python makes it easy. You can index from the right end of the string. Since positive integers are used
to index from the front, negative integers are used to index from the right end, so the more complete table
of indices for ’computer’ gives two alternatives for each character:

character c o m p u t e r
index 0 1 2 3 4 5 6 7

index from the right end -8 -7 -6 -5 -4 -3 -2 -1
Predict and test each individual line, continuing in the Shell:

s[-1]
s[-3]
s[-10]

it = ’horse’
len(it)
it[-1]
it[1]

Be careful - remember what the initial index is!

2.1.3. String Slices. It is also useful to extract larger pieces of a string than a single character. That
brings us to slices. Try this expression using slice notation, continuing in the Shell:

s[0:4]
Note that s[4] is the first character past the slice. The simplest syntax for a slice of a string s is:

s[startIndex : pastIndex]
This refers to the substring of s starting at index startIndex and stopping just before index pastIndex. It
confuses many people that the index after the colon is not the index of the final character in the slice, but
that is the system. Predict and try each line individually in the Shell:

s[2:5]
s[1:3]

If you omit the first index, the slice starts from the beginning. If you omit the second index, the slice goes
all the way to the end. Predict and try each line individually in the Shell:

s[:3]
s[5:]

Predict and try each line individually in the Shell:
word = ’program’
word[2:4]
word[1:-3]

2.1. STRINGS, PART III 56

word[3:]
word[3:3]
word[:1] + word[4:]

Python evaluates slices in a more forgiving manner than when indexing single characters. In a slice, if you
give an index past a limit of where it could be, Python assumes you mean the actual end. Predict and try
each line individually in the Shell:

word[:9]
word[8:10]

Enter a slice expression using the variable word from above that produces ’gra’.
A useful string method that uses the ideas of indices and slices is find.
Syntax options for find:

s.find(sub)
s.find(sub, start)
s.find(sub, start, end)

Return the integer index in the string s of the beginning of first complete occurrence of the substring sub. If
sub does not appear inside s, return -1. The value -1 would be an impossible result if sub were found, so if -1
is returned, sub must not have been found. If parameters start and end are not included in the parameter
list, the search is through the whole string s. If an integer value is given for start, the search starts at index
start. If an integer value is given for end, the search ends before index end. In other words if start and end
appear, then the search is through the slice s[start : end], but the index returned is still counted from the
beginning of s.

For example, check that the following make sense. The comment line is just there to help you count:
>�>�> # 01234567890
>�>�> s = ’Mississippi’
>�>�> s.find(’i’)
1
>�>�> s.find(’si’)
3
>�>�> s.find(’sa’)
-1
>�>�> s.find(’si’, 4)
6

Predict and try each line in the Shell:
0123456789012
line = ’Hello, there!’
line.find(’e’)
line.find(’he’)
line.find(’e’, 10)
line.find(’he’, 10)

We will consider more string methods later, but we can already do useful things with the ones introduced.
Inside the Shell, you can look up documentation on any of the methods listed with the dir function.

Here is a place that you want to refer to the method itself, not invoke the method, so note that you get
help for s.find not for s.find(). Assuming you defined the string s in the Shell earlier, try in the Shell

help(s.find)
The Python documentation uses square brackets to indicate optional elements that get a default value if you
leave them out. This shortens the syntax descriptions.

If you want method documentation when you do not have a variable of the type created, you can also
use the type name. Try in the Shell:

dir(str)
help(str.capitalize)

Indexing and slicing works on any kind of Python sequence, so you can index or slice lists also. Read this
Shell session:

2.1. STRINGS, PART III 57

>�>�> vals = [5, 7, 9, 22, 6, 8]
>�>�> vals[1]
7
>�>�> vals[-2]
6
>�>�> vals[1:4]
[7, 9, 22]

Unlike strings, lists are mutable, as you will see in Section 2.2.1. Indices and slices can also be used in
assignment statements to change lists, but in this tutorial we not need list indexing, and we will not discuss
this subject further.

2.1.4. Index Variables. All the concrete examples in the last two sections used literal numbers for
the indices. That is fine for learning the idea, but in practice, variables or expressions are almost always
used for indices. As usual the variable or expression is evaluated before being used. Try in Idle and see that
the example program index1.py makes sense:

s = ’word’
print(’The full string is: ’, s)
n = len(s)
for i in range(n):

print()
print(’i =’, i)
print(’The letter at index i:’, s[i])
print(’The part before index i (if any):’, s[:i])
print(’The part before index i+2:’, s[:i+2])

We will use index variables in more practical situations as we explain more operations with strings.

2.1.5. split. Syntax options for the split method with a string s:
s.split()
s.split(sep)

The first version splits s at any sequence of whitespace (blanks, newlines, tabs) and returns the remaining
parts of s as a list. If a string sep is specified, it is the separator that gets removed from between the parts
of the list.

For example, read and follow:
>�>�> tale = ’This is the best of times.’
>�>�> tale.split()
[’This’, ’is’, ’the’, ’best’, ’of’, ’times.’]
>�>�> s = ’Mississippi’
>�>�> s.split(’i’)
[’M’, ’ss’, ’ss’, ’pp’, ’’]
>�>�> s.split() # no white space
[’Mississippi’]

Predict and test each line in the Shell:
line = ’Go: Tear some strings apart!’
seq = line.split()
seq
line.split(’:’)
line.split(’ar’)
lines = ’This includes\nsome new\nlines.’
lines.split()

2.1. STRINGS, PART III 58

2.1.6. join. Join is roughly the reverse of split. It joins together a sequence of strings. The syntax is
rather different. The separator sep comes first, since it has the right type (a string).

Syntax for the join method:
sep.join(sequence)

Return a new string obtained by joining together the sequence of strings into one string, interleaving the
string sep between sequence elements.

For example (continuing in the Shell from the previous section, using seq):
>�>�> ’ ’.join(seq)
’Go: Tear some strings apart!’
>�>�> ’’.join(seq)
’Go:Tearsomestringsapart!’
>�>�> ’//’.join(seq)
’Go://Tear//some//strings//apart!’

Predict and try each line, continuing in the Shell:
’##’.join(seq)
’:’.join([’one’, ’two’, ’three’])

The methods split and join are often used in sequence:

Exercise 2.1.6.1. * Write a program underscores.py that would input a phrase from the user and
print out the phrase with the white space between words replaced by an underscore. For instance if the input
is "the best one", then it would print "the_best_one". The conversion can be done in one or two statements
using the recent string methods.

Exercise 2.1.6.2. ** An acronym is a string of capital letters formed by taking the first letters from
a phrase. For example, SADD is an acronym for ’students against drunk driving’. Note that the acronym
should be composed of all capital letters even if the original words are not. Write a program acronym.py
that has the user input a phrase and then prints the corresponding acronym.

To get you started, here are some things you will need to do. First check that you understand the basic
syntax to accomplish the different individual tasks: Indicate the proper syntax using a Python function or
operation will allow you to accomplish each task. Invent appropriate variable names for the different parts.
This is not complete instructions! the idea is to make sure you know the basic syntax to use in all these
situations. See the questions after the list to help you put together the final program.

(1) What type of data will the input be? What type of data will the output be?
(2) Get the phrase from the user.
(3) Convert to upper case.
(4) Divide the phrase into words.
(5) Initialize a new empty list, letters.
(6) Get the first letter of each word.
(7) Append the first letter to the list letters.
(8) Join the letters together, with no space between them.
(9) Print the acronym.

Which of these steps is in a loop? What for statement controls this loop?
Put these ideas together and write and test your program acronym.py. Make sure you use names for

the objects that are consistent from one line to the next! (You might not have done that when you first
considered the syntax and ideas needed for 1-9 above individually.)

2.1.7. Further Exploration: As the dir(’’) list showed, there are many more operations on strings
than we have discussed, and there are further variations of the ones above with more parameters. If you want
to reach a systematic reference from inside Idle, go to Help-> Python Docs, select Library Reference, and
Section 2.3 Built-in Types, and then Section 2.3.6.1, String Methods. (This depends on you being attached
to the Internet, or having idle configured to look at a local copy of the official Python documentation.) Many
methods use features we have not discussed yet, but currently accessible methods are capitalize, title,
strip, rfind, replace....

2.2. MORE CLASSES AND METHODS 59

2.2. More Classes and Methods

The classes and methods introduced here are all used for the revised mad lib program developed in the
next section.

2.2.1. Appending to a List. Before making a version of the madlib program that is much easier to
use with new stories, we need a couple of facts about other types of objects that are built into Python.

So far we have used lists, but we have not changed the contents of lists. The most obvious way to change
a list is to add a new element onto the end. Lists have the method append. It modifies the original list.
Another word for modifiable is mutable. Lists are mutable. Most of the types of object considered so far
(int, str, float) are immutable or not mutable. Read and see how the list named words changes:

>�>�> words = list()
>�>�> words
[]
>�>�> words.append(’animal’)
>�>�> words
[’animal’]
>�>�> words.append(’food’)
>�>�> words
[’animal’, ’food’]
>�>�> words.append(’city’)
>�>�> words
[’animal’, ’food’, ’city’]

This is particularly useful in a loop, where we can accumulate a new list. Read the start of this simple
example:

def multipleAll(numList, multiplier):
’’’Return a new list containing all of the elements of numList,
each multiplied by multiplier. For example:

>�>�> print(multipleAll([3, 1, 7], 5))
[15, 5, 35]
’’’
more to come

Clearly this will be repetitious. We will process each element of the list numList. A for-each loop with
numList is appropriate. Also we need to create more and more elements of the new list. The accumulation
pattern will work here, with a couple of wrinkles.

Test yourself : If we are going to accumulate a list. How do we initialize the list?

In earlier versions of the accumulation loop, we needed an assignment statement to change the object
doing the accumulating, but now the method append modifies its list automatically, so we do not need an
assignment statement. Read and try the example program multiply.py:

def multipleAll(numList, multiplier): #1
’’’Return a new list containing all of the elements of numList,
each multiplied by multiplier. For example:

>�>�> print(multipleAll([3, 1, 7], 5))
[15, 5, 35]
’’’

newList = list() #2
for num in numList: #3

newList.append(num*multiplier) #4
return newList #5

2.2. MORE CLASSES AND METHODS 60

print(multipleAll([3, 1, 7], 5)) #6
Make sure the result makes sense to you or follow the details of playing computer below.

Line numList multiplier newList num comment
1-5 - - - - definition
6 - - - - call function
1 [3, 1, 7 5 - set formal parameters
2 [3, 1, 7 5 []
3 [3, 1, 7 5 [] 3 first in list
4 [3, 1, 7 5 [15] 3 append 3*5 = 15
3 [3, 1, 7 5 [15] 1 next in list
4 [3, 1, 7 5 [15, 5] 1 append 1*5 = 5
3 [3, 1, 7 5 [15, 5] 7 last in list
4 [3, 1, 7 5 [15, 5, 35] 7 append 7*5 = 35
3 [3, 1, 7 5 [15, 5, 35] 7 done with list and loop
5 [3, 1, 7 5 [15, 5, 35] 7 return [15, 5, 35]
6 - - - - print [15, 3, 35]

Using a for-loop and append is a powerful and flexible way to derive a new list, but not the only way.4

2.2.2. Sets. A list may contain duplicates, as in [2, 1, 3, 2, 5, 5, 2]. This is sometimes useful,
and sometimes not. You may have learned in math class that a set is a collection that does not allow
repetitions (a set automatically removes repetitions suggested). Python has a type set. Like many type
names, it can be used to convert other types. In this case it makes sense to convert any collection, and the
process removes duplicates.Read and see what happens:

>�>�> numberList = [2, 1, 3, 2, 5, 5, 2]
>�>�> aSet = set(numberList)
>�>�> aSet
{1, 2, 3, 5}

Set literals are enclosed in braces. Like other collections, a set can be used as a sequence in a for-loop.
Read, and check it makes sense:

>�>�> for item in aSet:
print(item)

1
2
3
5

Predict the result of the following, and then paste it into the Shell and test. (Technically, a set is unordered,
so you may not guess Python’s order, but see if you can get the right length and the right elements in some
order.)

set([’animal’, ’food’, ’animal’, ’food’, ’food’, ’city’])

2.2.3. Constructors. We have now seen several examples of the name of a type being used as a
function. Read these earlier examples:

x = int(’123’)
s = str(123)

4There is also a concise syntax called list comprehension that allows you to derive a new list from a given sequence. In
the example above, we could describe what happens in English as “make newList contain twice each number in numList”. This
is quite directly translated into an assignment with a list comprehension:
newList = [2*num for num in numList]
This is a lot like mathematical set definition notation, except without Greek symbols. List comprehensions also have fancier
options, but they are not covered in this tutorial.

2.3. MAD LIBS REVISITED 61

nums = list()
aSet = set(numberList)

In all such cases a new object of the specified type is constructed and returned, and such functions are called
constructors.

2.3. Mad Libs Revisited

2.3.1. A Function to Ease the Creation of Mad Libs. The versions so far of the Mad Lib program
have been fairly easy to edit to contain a different mad lib:

(1) Come up with a new mad lib story as a format string
(2) Produce the list of cues to prompt the user with.

The first is a creative process. The second is a pretty mechanical process of looking at the story string and
copying out the embedded cues. The first is best left to humans. The second can be turned over to a Python
function to do automatically, as many times as we like, with any story – if we write it once.

Writing the Python code also takes a different sort of creativity! We shall illustrate a creative process.
This is a bigger problem than any we have taken on so far. It is hard to illustrate a creative process if the
overall problem is too simple.

Try and follow along. Read the sample code and pseudocode.
There is nothing to try in the Shell or editor until further notice.
If we follow the last version of the mad lib program, we had a loop iterating through the keys in the

story, and making a dictionary entry for each key. The main idea we follow here is to use the format string
to automatically generate the sequence of keys. Let us plan this unified task as a new function:

def getKeys(formatString):
’’’formatString is a format string with embedded dictionary keys.
Return a list containing all the keys from the format string.’’’
more to come

The keys we want are embedded like {animal}. There may be any number of them in the format string. This
indeterminacy suggests a loop to extract them. At this point we have only considered for-loops. There is
no obvious useful sequence to iterate through in the loop (we are trying to create such a sequence). The only
pattern we have discussed that does not actively process each element of a significant list is a repeat-loop,
where we just use the loop to repeat the correct number of times. This will work in this case.

First: how many times do we want to pull out a key – once for each embedded format. So how do we
count those?

The count method is obviously a way to count. However we must count a fixed string, and the whole
embedded formats vary (with different keys in the middle. A common part is ’{’, and this should not
appear in the regular text of the story, so it will serve our purpose:

repetitions = formatString.count(’{’)
for i in range(repetitions):

...
This is certainly the most challenging code to date. Before jumping into writing it all precisely, we can give
an overall plan in pseudo-code. For a plan we need an idea of what quantities we are keeping track of, and
name them, and outline the sequence of operations with them.

Think about data to name:
In this case we are trying to find a list. We will need to extract one element at a time and add it to the

list, so we need a list, say keyList.
The central task is to identifying the individual keys. When we find a key we can call it key.
Think about identifying the text of individual keys. This may be too hard to think of in the abstract, so

let us use as a concrete example, and let us keep it simple for the moment. Suppose the data in formatString
starts off as follows. The lines with numbers are added to help us refer to the indices. Display of possible
data:

1111111111222222222233333333
01234567890123456789012345678901234567
’blah {animal} blah blah {food} ...’

2.3. MAD LIBS REVISITED 62

The first key is ’animal’ at formatString[6:12]. The next key is ’food’ at formatString[25:29]. To
identify each key as part of formatString we need not only the variable formatString, but also index
variables to locate the start and end of the slices. Obvious names for the indices are start and end. We
want to keep them current so the next key slice will always be

key = formatString[start : end]
Let us now put this all in an overall plan. We will have to continuously modify the start and end indices,
the key, and the list. We have a basic pattern for accumulating a list, involving initializing it and appending
to it. We can organize a plan, partly fleshed out, with a couple of approximations to be worked out still.
The parts that are not yet in Python are emphasized:

def getKeys(formatString):

keyList = list()
?? other initializations ??
repetitions = formatString.count(’{’)
for i in range(repetitions):

find the start and end of the next key
key = formatString[start : end]
keyList.append(key)

return keyList
We can see that the main piece left is to find the start and end indices for each key. The important word is
find: the method we consider is find. As with the plan for using count above, the beginnings of keys are
identified by the specific string ’{’. We can look first at

formatString.find(’{’)
but that is not the full solution. If we look at our concrete example, the value returned is 5, not 6. How in
general would we locate the beginning of the slice we want?

We do not want the position of the beginning of ’{’, but the position just after the ’{’. Since the
length of ’{’ is 1, the correct position is 5+1 = 6. We can generalize this to

start = formatString.find(’{’) + 1
OK, what about end? Clearly it is at the ’}’. In this example,

formatString.find(’}’)
gives us 12, exactly the right place for the end of the slice (one place past the actual end).

There is a subtle issue here that will be even more important later: We will kep wanting to find the next
brace,a dn not keep finding the first brace. How do we fix that?

Recall there was an alternate syntax for find, specifying the first place to search! That is what we need.
Where should we start? Well, the end must come after the start of the key, our variable start:

start = formatString.find(’{’) + 1
end = formatString.find(’}’, start)

Figuring out how to find the first key is important, but we are not home free yet. We need to come up with
code that works in a loop for the later keys. This code will not work for the next one. Why?

The search for ’{’ will again start from the beginning of the format string, and will find the first key
again. So what code will work for the second search? We search for the start of the next key going from the
end of the last one:

start = formatString.find(’{’, end) + 1
end = formatString.find(’}’, start)

This code will also work for later times through the loop: each time uses the end from the previous time
through the loop.

So now what do we do for finding the first key? We could separate the treatment of the first key from
all the others, but an easier approach would be to see if we can use the same code that already works for
the later repetitions, and initialize variables right to make it work. If we are to find the first key with

start = formatString.find(’{’, end) + 1

2.3. MAD LIBS REVISITED 63

then what do we need? Clearly end needs to have a value. (There will not be a previous loop to give it a
value.) What value should we initialize it to? The first search starts from the beginning of the string at
index 0, so the full code for this function is

def getKeys(formatString):
’’’formatString is a format string with embedded dictionary keys.
Return a list containing all the keys from the format string.’’’

keyList = list()
end = 0
repetitions = formatString.count(’{’)
for i in range(repetitions):

start = formatString.find(’{’, end) + 1
end = formatString.find(’}’, start)
key = formatString[start : end]
keyList.append(key)

return keyList

Look the code over and see that it makes sense. See how we continuously modify start, end, key, and
keyList. Since we have coded this new part as a function, it is easy to test without running a whole revised
mad lib program. We can just run this function on some test data, like the original story, and see what it
does. Run the example program testGetKeys.py:

def getKeys(formatString):
’’’formatString is a format string with embedded dictionary keys.
Return a list containing all the keys from the format string.’’’

keyList = list()
end = 0
repetitions = formatString.count(’{’)
for i in range(repetitions):

start = formatString.find(’{’, end) + 1
end = formatString.find(’}’, start)
key = formatString[start : end]
keyList.append(key)

return keyList

originalStory = """
Once upon a time, deep in an ancient jungle,
there lived a {animal}. This {animal}
liked to eat {food}, but the jungle had
very little {food} to offer. One day, an
explorer found the {animal} and discovered
it liked {food}. The explorer took the
{animal} back to {city}, where it could
eat as much {food} as it wanted. However,
the {animal} became homesick, so the
explorer brought it back to the jungle,
leaving a large supply of {food}.

The End
"""

print(getKeys(originalStory))

2.3. MAD LIBS REVISITED 64

The functions should behave as advertised.
Look back on the process described to come up with the getKeys function. One way of approaching

the creative process of coding this function was provided. There are many other results and approaches
possible, but the discussion did illustrate a number of useful ideas which you might adapt to other problems,
in different orders and proportions, that are summarized in the next section.

2.3.2. Creative Problem Solving Steps.
• Clearly define the problem. Encapsulating the problem in a function is useful, with inputs as
parameters and results returned. Include a complete documentation string, and a clear example
(or examples) of what it is to do.

• If the problem is too complicated to just solve easily, straight away, it is often useful to construct
a representative concrete case and write down concrete steps appropriate to this problem.

• Think of the data in the problem, and give names to the pieces you will need to refer to. Clearly
identify the ideas that the names correspond to. When using sequences like lists or strings, you
generally need names not only for the whole collection, but also parts like items and characters or
substrings, and often indices that locate parts of the collection.

• Plan the overall approach to the problem using a mixture of Python and suggestive phrases (called
pseudo-code). The idea is to refine it to a place where you can fairly easily figure how to replace
the phases with Python.

• Replace your pseudo-code parts with Python. If you had a concrete example to guide, you may
want one of more further concrete examples with different specific data, to make sure you come up
with code for a generalization that works in all cases.

• Recognize where something is being repeated over and over, and think how to structure appropriate
loops. Can you incorporate any patterns you have seen before?

• If you need to create a successive modification loop, think of how to approach the first repetition
and then how to modify the data for the later times through the loop. Usually you can make
the first time through the loop fit the more general pattern needed for the repetitions by making
appropriate initializations before the loop.

• Check and test your code, and correct as necessary.

2.3.3. The Revised Mad Lib Program. There is still an issue for use of getKeys in the mad lib
program: the returned list has repetitions in it, that we do not want in the mad lib program. We can easily
create a collection without repetitions, how?

One approach is to make a set from the list returned. A neater approach would be to just have the
getKeys function return a set in the first place. We need to slightly change to getKeys’ documentation
string and the final return line. This will be included in a new version of the mad lib program, which makes
it easy to substitute a new story. We will make the story’s format string be a parameter to the central
method, tellStory. We will also put the clearly identified step of filling the dictionary with the user’s
picks in a separate function. We will test tellStory with the original story. Note the changes included in
madlib2.py and run:

"""
madlib2.py
Interactive display of a mad lib, which is provided as a Python format string,
with all the cues being dictionary formats, in the form {cue}.
In this version, the cues are extracted from the story automatically,
and the user is prompted for the replacements.

Original mad lib adapted from code of Kirby Urner

"""

def getKeys(formatString): # change: returns a set
’’’formatString is a format string with embedded dictionary keys.
Return a set containing all the keys from the format string.’’’
keyList = list()

2.3. MAD LIBS REVISITED 65

end = 0
repetitions = formatString.count(’{’)
for i in range(repetitions):

start = formatString.find(’{’, end) + 1
end = formatString.find(’}’, start)
key = formatString[start : end]
keyList.append(key) # may add duplicates

return set(keyList) # removes duplicates: no duplicates in a set

def addPick(cue, dictionary): # from madlib.py
’’’Prompt the user and add one cue to the dictionary.’’’
prompt = ’Enter an example for ’ + cue + ’: ’
dictionary[cue] = input(prompt)

def getUserPicks(cues):
’’’Loop through the collection of cue keys and get user choices.
Return the resulting dictionary.
’’’
userPicks = dict()
for cue in cues:

addPick(cue, userPicks)
return userPicks

def tellStory(story):
’’’story is a format string with Python dictionary references embedded,
in the form {cue}. Prompt the user for the mad lib substitutions
and then print the resulting story with the substitutions.
’’’

cues = getKeys(story)
userPicks = getUserPicks(cues)
print(story.format(**userPicks))

def main():
originalStory = ’’’

Once upon a time, deep in an ancient jungle,
there lived a {animal}. This {animal}
liked to eat {food}, but the jungle had
very little {food} to offer. One day, an
explorer found the {animal} and discovered
it liked {food}. The explorer took the
{animal} back to {city}, where it could
eat as much {food} as it wanted. However,
the {animal} became homesick, so the
explorer brought it back to the jungle,
leaving a large supply of {food}.

The End
’’’

tellStory(originalStory)

main()

2.4. GRAPHICS 66

Does the use of well-named functions make it easier to follow this code? Make sure you follow the flow of
execution and data.

After Python file manipulation is introduced, in Exercise 2.5.0.3you can modify the program to work on
a madlib format string chosen by the user and taken from a file.

Exercise 2.3.3.1. ** Rename the example file locationsStub.py to be locations.py, and complete the
function printLocations, to print the index of each location in the string s where target is located. For exam-
ple, printLocations(’This is a dish’, ’is’) would go through the string ’This is a dish’ looking
for the index of places where ’is’ appears, and would return [2, 5, 11]. Similarly printLocations(’This
is a dish’, ’h’) would return [1, 13]. The program stub already uses the string method count. You
will need to add code using the more general form of find.

2.4. Graphics

Graphics make programming more fun for many people. To fully introduce graphics would involve many
ideas that would be a distraction now. This section introduces a simplified graphics module developed by
John Zelle for use with his Python Programming book. My slight elaboration of his package is graphics.py
in the example programs.

Repeated caution: In Windows XP or Vista, be sure to start Idle from the shortcut provided in the
examples (in the same directory as graphics.py). Do not start by clicking on an existing file to get a context
menu and choosing Open With Idle: The ’Open With Idle’ allows you to edit, but then when you go to run
your graphics program, it fails miserably and with no clear reason.

2.4.1. A Graphics Introduction in the Shell. Make sure you have Idle started from inside your
Python folder, and have graphics.py in the same folder, so the Python interpreter can find it.

Note: you will just be a user of the graphics.py code, so you do not need to understand the inner
workings! It uses all sorts of features of Python that are way beyond these tutorials. There is no particular
need to open graphics.py in the Idle editor.

You will definitely want to be a user of the graphical module.
In Idle, in the Shell, enter the following lines, one at a time and read the explanations:

from graphics import *

Zelle’s graphics are not a part of the standard Python distribution. For the Python interpreter to find Zelle’s
module, it must be imported. The line above makes all the types of object of Zelle’s module accessible, as if
they were already defined like built-in types str or list.

Pause after you enter the opening parenthesis below:
win = GraphWin(

The Idle editor tries to help you by displaying a pop-up tool tip with the parameter names and sometimes
a default value after an equal sign. The default value is used if you supply nothing. In this case we will use
the default values, so you can just finish by entering the closing parenthesis, now, completing

win = GraphWin()

Look around on your screen, and possibly underneath other windows: There should be a new window labeled
“Graphics Window”. Bring it to the top, and preferably drag it around to make it visible beside your Shell
window. A GraphWin is a type of object from Zelle’s graphics package that automatically displays a window
when it is created. The assignment statement remembers the window object as win for future reference.
(This will be our standard name for our graphics window object.) A small window, 200 by 200 pixels is
created. A pixel is the smallest little square that can by displayed on your screen. Modern screen usually
have more than 1000 pixels across the whole screen.

Again, pause after entering the opening parenthesis below, and see how Idle hints at the meaning of the
parameters to create a Point object. Then complete the line as given below:

pt = Point(100, 50)

This creates a Point object and assigns it the name pt. Unlike when a GraphWin is created, nothing is
immediately displayed: In theory you could have more than one GraphWin. Zelle designed the graphics

2.4. GRAPHICS 67

module so you must tell Python into which GraphWin to draw the Point. A Point object, like each of the
graphical objects that can be drawn on a GraphWin, has a method5draw. Enter

pt.draw(win)

Now you should see the Point if you look hard in the Graphics Window - it shows as a single, small, black
pixel. Graphics windows have a Cartesian (x,y) coordinate system. The dimensions are initially measured
in pixels. The first coordinate is the horizontal coordinate, measured from left to right, so 100 is about half
way across the 200 pixel wide window. The second coordinate, for the vertical direction, increases going
down from the top of the window by default, not up as you are likely to expect from geometry or algebra
class. The coordinate 50 out of the total 200 vertically should be about 1/4 of the way down from the top.
We will see later that we can reorient the coordinate system to fit our taste.

Enter both of the lines of code
cir = Circle(pt, 25)
cir.draw(win)

The first line creates a Circle object with center at the previously defined pt and with radius 25. This object
is remembered with the name cir. As with all graphics objects that may be drawn within a GraphWin, it is
only made visible by explicitly using its draw method:

So far, everything has been drawn in the default color black. Graphics objects like a Circle have methods
to change their colors. Basic color name strings are recognized. You can choose the color for the circle outline
as well as filling in the inside. Enter both lines

cir.setOutline("red")
cir.setFill("blue")

Now add
line = Line(pt, Point(150, 100))
line.draw(win)

A Line object is constructed with two Points as parameters. In this case we use the previously named Point,
pt, and specify another Point directly. Technically the Line object is a segment between the the two points.

A rectangle is also specified by two points. The points must be diagonally opposite corners. Try
rect = Rectangle(Point(20, 10), pt)
rect.draw(win)

You can move objects around in a GraphWin. This will be handy for animation, shortly. The parameters
to the move method are the amount to shift the x and y coordinates. See if you can guess the result before
you enter:

line.move(10, 40)

Did you remember that the y coordinate increases down the screen?
Feel free to further modify the graphics window using the methods introduced. To do this in a more

systematic and easily reproduced way, we will shortly switch to program files, but then you do not get to
see the effect of each statement individually and immediately!

Take your last look at the Graphics Window, and make sure that all the steps make sense. Then destroy
the window win with the GraphWin method close:

win.close()

An addition I have made to Zelle’s package is the ability to print a string value of graphics objects for
debugging purposes. Assuming you downloaded graphics.py from the hands-on site (not Zelle’s), continue
in the Shell with

print(line)

If some graphics object isn’t visible because it is underneath something else of off the screen, this sort of
output might be a good reality check.

5The basic ideas of objects and methods were introduced in Section 2.1.1.

2.4. GRAPHICS 68

2.4.2. Sample Graphics Programs. Here is a very simple program, face.py. The only interaction
is to click the mouse to close the graphics window. Have a directory window open to the Python examples
folder containing face.py. In Windows you can double click on the icon for face.py to run it.

After you have checked out the picture, click with the mouse inside the picture, as requested, to terminate
the program.

After you have run the program, you can examine the program in Idle or look below. The whole program
is shown first; smaller pieces of it are discussed later:

’’’A simple graphics example constructs a face from basic shapes.
’’’

from graphics import *

def main():
winWidth = 200 # give a name to the window width
winHeight = 150 # and height
win = GraphWin(’Face’, winWidth, winHeight) # give title and dimensions
win.setCoords(0, 0, winWidth, winHeight) # make right side up coordinates!

head = Circle(Point(40,100), 25) # set center and radius
head.setFill("yellow")
head.draw(win)

eye1 = Circle(Point(30, 105), 5)
eye1.setFill(’blue’)
eye1.draw(win)

eye2 = Line(Point(45, 105), Point(55, 105)) # set endpoints
eye2.setWidth(3)
eye2.draw(win)

mouth = Oval(Point(30, 90), Point(50, 85)) # set corners of bounding box
mouth.setFill("red")
mouth.draw(win)

message = Text(Point(winWidth/2, 20), ’Click anywhere to quit.’)
message.draw(win)
win.getMouse()
win.close()

main()

Let us look at individual parts.
Until further notice the set-off code is for you to read and have explained.
Immediately after the documentation string, always have the import line in your graphics program, to

allow easy access to the graphics.py module:
from graphics import *

Though not a graphics issue, the first two lines of the main method illustrate a very good practice:
winWidth = 200 # give a name to the window width
winHeight = 150 # and height

Important parameters for your programs should get names. Within the program the names will make more
sense to the human user than the literal data values. Plus, in this program, these parameters are used several
times. If I choose to change the window size to 400 by 350, I only need to change the value of each dimension
in one place!

2.4. GRAPHICS 69

win = GraphWin(’Face’, winWidth, winHeight) # give title and dimensions
win.setCoords(0, 0, winWidth, winHeight) # make right side up coordinates!

The first line shows the more general parameters for constructing a new GraphWin, a window title and
dimensions in pixels. The second line shows how to turn the coordinate system right-side-up, so the y
coordinate increases up the screen. The setCoords method sets up a new coordinate system, where the first
two numbers are the coordinates you wish to use for the lower left corner of the window, and the last two
numbers are the coordinates of the upper right corner. Thereafter, all coordinates are given in the new
coordinate system, and the graphics module silently calculates the correct underlying pixel positions. All
the lines of code up to this point in the program are my standard graphics program starting lines (other
than the specific values for the title and dimensions). You will likely start your programs with similar code.

head = Circle(Point(40,100), 25) # set center and radius
head.setFill("yellow")
head.draw(win)

eye1 = Circle(Point(30, 105), 5)
eye1.setFill(’blue’)
eye1.draw(win)

The lines above create two circles, in each case specifying the centers directly. They are filled in and made
visible.

eye2 = Line(Point(45, 105), Point(55, 105)) # set endpoints
eye2.setWidth(3)
eye2.draw(win)

The code above draws and displays a line, and illustrates another method available to graphics object,
setWidth, making a thicker line.

mouth = Oval(Point(30, 90), Point(50, 85)) # set corners of bounding box
mouth.setFill("red")
mouth.draw(win)

The code above illustrates another kind of graphics object, an Oval (or ellipse). There are several ways an
oval could be specified. Zelle chose to have you specify the corners of the bounding box that is just as high
and as wide as the oval. This rectangle is only imagined, not actually drawn. (If you want to see such a
rectangle, create a Rectangle object with the same two Points as paramaeters..)

The exact coordinates for the parts were determined by a number of trial-and-error refinements to the
program. An advantage of graphics is that you can see the results of your programming, and make changes
if you do not like the results!

The final action is to have the user signal to close the window. Just as with waiting for keyboard input
from input or input, it is important to prompt the user before waiting for a response! In a GraphWin, the
prompt must be made with a Text object displayed explicitly before the response is expected. Lines like the
following will often end a program that has a final displayed picture:

message = Text(Point(winWidth/2, 20), ’Click anywhere to quit.’)
message.draw(win)
win.getMouse()
win.close()

The parameters to construct the Text object are the point at the center of the text, and the text string
itself. See how the text position is set up to be centered from left to right, half way across the window’s
width. Also note, that because the earlier win.setCoord call put the coordinates in the normal orientation,
the y coordinate, 20, is close to the bottom of the window.

After the first two lines draw the promping text, the line win.getMouse() waits for a mouse click. In
this program, the position is not important. (In the next example the position of this mouse click will be
used.) As you have seen before, win.close() closes the graphics window.

2.4. GRAPHICS 70

While our earlier text-based Python programs have automatically terminated after the last line finishes
executing, that is not true for programs that create new windows: The graphics window must be explicitly
closed. The win.close() is necessary.

You can copy the form of this program for other simple programs that just draw a picture. The size and
title on the window will change, as well as the specific graphical objects, positions, and colors. Something
like the last four lines can be used to terminate the program.

Another simple drawing example is balloons.py. Feel free to run it and look at the code in Idle. Note
that the steps for the creation of all three balloons are identical, except for the location of the center of each
balloon, so a loop over a list of the centers makes sense.

The next example, triangle.py, illustrates similar starting and ending code. In addition it explicitly
interacts with the user. Rather than the code specifying literal coordinates for all graphical objects, the
program remembers the places where the user clicks the mouse, and uses them as the vertices of a triangle.

Return to the directory window for the Python examples. In Windows you can double click on the icon
for triangle.py to run it.

While running the program, follow the prompts in the graphics window and click with the mouse as
requested.

After you have run the program, you can examine the program in Idle or look below:
’’’Program: triangle.py or triangle.pyw (best name for Windows)
Interactive graphics program to draw a triangle,
with prompts in a Text object and feedback via mouse clicks.
Illustrates all of the most common GraphWin methods, plus
some of the ways to change the appearance of the graphics.
’’’

from graphics import *

def main():
winWidth = 300
winHeight = 300
win = GraphWin(’Draw a Triangle’, winWidth, winHeight)
win.setCoords(0, 0, winWidth, winHeight) # make right-side-up coordinates!
win.setBackground(’yellow’)

message = Text(Point(winWidth/2, 20), ’Click on three points’)
message.draw(win)

Get and draw three vertices of triangle
p1 = win.getMouse()
p1.draw(win)

p2 = win.getMouse()
p2.draw(win)

p3 = win.getMouse()
p3.draw(win)

vertices = [p1, p2, p3]
triangle = Polygon(vertices)
triangle.setFill(’gray’)
triangle.setOutline(’cyan’)
triangle.setWidth(4) # width of boundary line
triangle.draw(win)

Wait for a final click to exit

2.4. GRAPHICS 71

message.setText(’Click anywhere to quit.’)
message.setTextColor(’red’)
message.setStyle(’italic’)
message.setSize(20)

win.getMouse()
win.close()

main()

Let us look at individual parts.
Until further notice the set-off code is for you to read and have explained.
The lines before

win.setBackground(’yellow’)

are standard starting lines (except for the specific values chosen for the width, height, and title). The
background color is a property of the whole graphics window that you can set. The line above illustrates
the last new common method of a GraphWin.

message = Text(Point(winWidth/2, 20), ’Click on three points’)
message.draw(win)

Again a Text object is created. We will see below how the Text object can be modified later. This is the
prompt for user action, expected for use in the lines

Get and draw three vertices of triangle
p1 = win.getMouse()
p1.draw(win)

p2 = win.getMouse()
p2.draw(win)

p3 = win.getMouse()
p3.draw(win)

The win.getMouse() method (with no parameters), waits for you to click the mouse inside win. Then the
Point where the mouse was clicked is returned. In this code three mouse clicks are waited for, remembered
in variables p1, p2, and p3, and the points are drawn.

Next we introduce a very versatile type of graphical object, a Polygon, which may have any number of
vertices specified in a list as its parameter. We see that the methods setFill and setOutline that we used
earlier on a Circle, and the setWidth method available for a Line, also apply to a Polygon, (and also to
other graphics objects).

vertices = [p1, p2, p3]
triangle = Polygon(vertices)
triangle.setFill(’gray’)
triangle.setOutline(’cyan’)
triangle.setWidth(4)
triangle.draw(win)

The next few lines illustrate most of the ways a Text object may be modified. Not only may the text string be
changed. The appearance may be changed like in most word processors. The reference pages for graphics.py
give the details.

Wait for a final click to exit
message.setText(’Click anywhere to quit.’)
message.setTextColor(’red’)
message.setStyle(’italic’)
message.setSize(20)

After this prompt (with its artificially elaborate styling), we have the standard finishing lines:

2.4. GRAPHICS 72

win.getMouse()
win.close()

2.4.3. A Windows Operating System Specialization: .pyw. This Windows-specific section is not
essential. It does describe how to make some Windows graphical programs run with less clutter.

If you ran the triangle.py program by double clicking its icon under Windows, you might have noticed a
console window first appearing, followed by the graphics window. For this program, there was no keyboard
input or screen output through the console window, so the console window was unused and unnecessary.
In such cases, under Windows, you can change the source file extension from .py to .pyw, suppressing the
display of the console window. If you are using windows, check it out.

The distinction is irrelevant inside Idle, which always has its Shell window.

2.4.4. Graphics.py vs. Event Driven Graphics. This optional section only looks forward to more
elaborate graphics systems than are used in this tutorial.

One limitation of the graphics.py module is that it is not robust if a graphics window is closed by clicking
on the standard operating system close button on the title bar. If you close a graphics window that way,
you are likely to get a Python error message. On the other hand, if your program creates a graphics window
and then terminates abnormally due to some other error, the graphics window may be left orphaned. In this
case the close button on the title bar is important: it is the easiest method to clean up and get rid of the
window!

This lack of robustness is tied to the simplification designed into the graphics module. Modern graphics
environments are event driven. The program can be interrupted by input from many sources including
mouse clicks and key presses. This style of programming has a considerable learning curve. In Zelle’s
graphics package, the complexities of the event driven model are pretty well hidden. If the programmer
wants user input, only one type can be specified at a time (either a mouse click in the graphics window via
the getMouse method, or via the input or input keyboard entry methods into the Shell window).

2.4.5. The Documentation for graphics.py. Thus far various parts of Zelle’s graphics package
have been introduced by example. A systematic reference to Zelle’s graphics package with the form of all
function calls is at http://mcsp.wartburg.edu/zelle/python/graphics/graphics/index.html. We have
introduced most of the important concepts and methods.

One special graphics input object type, Entry, will be discussed later. You might skip it for now.
Another section of the reference that will not be pursued in the tutorials is the Image class.

Meanwhile you can look at http://mcsp.wartburg.edu/zelle/python/graphics/graphics/index.
html. It is important to pay attention to the organization of the reference: Most graphics object share a
number of common methods. Those methods are described together, first. Then, under the headings for
specific types, only the specialized additional methods are discussed.

Exercise 2.4.5.1. * Make a program scene.py creating a scene with the graphics methods. You are
likely to need to adjust the positions of objects by trial and error until you get the positions you want. Make
sure you have graphics.py in the same directory as your program.

Exercise 2.4.5.2. * Elaborate your scene program so it becomes changeScene.py, and changes one or
more times when you click the mouse (and use win.getMouse()). You may use the position of the mouse
click to affect the result, or it may just indicate you are ready to go on to the next view.

2.4.6. Issues with Mutable Objects: The Case for clone. Zelle chose to have the constructor
for a Rectangle take diagonally opposite corner points as parameters. Suppose you prefer to specify only
one corner and also specify the width and height of the rectangle. You might come up with the following
function, makeRect, to return such a new Rectangle. Read the following attempt:

def makeRect(corner, width, height):
’’’Return a new Rectangle given one corner Point and the dimensions.’’’
corner2 = corner
corner2.move(width, height)
return Rectangle(corner, corner2)

2.4. GRAPHICS 73

The second corner must be created to use in the Rectangle constructor, and it is done above in two steps.
Start corner2 from the given corner and shift it by the dimensions of the Rectangle to the other corner.
With both corners specified, you can use Zelle’s version of the Rectangle constructor.

Unfortunately this is an incorrect argument. Run the example program makeRectBad.py:

’’’Program: makeRectBad.py
Attempt a function makeRect (incorrectly), which takes
a takes a corner Point and dimensions to construct a Rectangle.
’’’

from graphics import *

def makeRect(corner, width, height): # Incorrect!
’’’Return a new Rectangle given one corner Point and the dimensions.’’’
corner2 = corner
corner2.move(width, height)
return Rectangle(corner, corner2)

def main():
winWidth = 300
winHeight = 300
win = GraphWin(’Draw a Rectangle (NOT!)’, winWidth, winHeight)
win.setCoords(0, 0, winWidth, winHeight)
rect = makeRect(Point(20, 50), 250, 200)
rect.draw(win)

Wait for another click to exit
msg = Text(Point(winWidth/2, 20),’Click anywhere to quit.’)
msg.draw(win)
win.getMouse()
win.close()

main()

By stated design, this program should draw a rectangle with one corner at the point (20, 50) and the other
corner at (20+250, 50+200) or the point (270, 250), and so the rectangle should take up most of the 300
by 300 window. When you run it however that is not what you see. Look carefully. You should just see
one Point toward the upper right corner, where the second corner should be. Since a Rectangle was being
drawn, it looks like it is the tiniest of Rectangles, where the opposite corners are at the same point! Hm,
well the program did make the corners be the same initially. Recall we set

corner2 = corner

What happens after that?
Read and follow the details of what happens.
We need to take a much more careful look at what naming an object means. A good way to visualize

this association between a name and an object is to draw an arrow from the name to the object associated
with it. The object here is a Point, which has an x and y coordinate describing its state, so when the
makeRect method is started the parameter name corner is associated with the actual parameter, a Point
with coordinates (20, 50).

2.4. GRAPHICS 74

Next, the assignment statement associates the name corner2 with the same object. It is another name,
or alias, for the original Point.

The next line,

corner2.move(width, height)

internally changes or mutates the Point object, and since in this case width is 250 and height is 200, the
coordinates of the Point associated with the name corner2 change to 20+250=270 and 50+200=250:

Look! The name corner is still associated with the same object, but that object has changed internally!
That is the problem: we wanted to keep the name corner associated with the point with original coordinates,
but it has been modified.

The solution is to use the clone method that is defined for all the graphical objects in graphics.py. It
creates a separate object, which is a copy with an equivalent state. We just need to change the line

corner2 = corner

to

corner2 = corner.clone()

A diagram of the situation after the cloning is:

2.4. GRAPHICS 75

Though corner and corner2 refer to points with equivalent coordinates, they do not refer to the same
object. Then after

corner2.move(width, height)

we get:

No conflict: corner and corner2 refer to the corners we want. Run the corrected example program,
makeRectange.py.

2.4.7. More on Mutable and Immutable Types. Read this section if you want a deeper under-
standing of the significance of muable and immutable objects.

This alias problem only came up because a Point is mutable. We had no such problems with the
immutable types int or str.

Read and follow the discussion of the following code.
Just for comparison, consider the corresponding diagrams for code with ints that looks superficially

similar:

a = 2
b = a
b = b + 3

After the first two lines we have an alias again:

2.4. GRAPHICS 76

The third line does not change the int object 2. The result of the addition operation refers to a different
object, 5, and the name b is assigned to it:

Hence a is still associated with the integer 2 – no conflict.
It is not technically correct to think of b as being the number 2, and then 5, but a little sloppiness of

thought does not get you in trouble with immutable types. With mutable types, however, be very careful of
aliases. Then it is very important to remember the indirectness: that a name is not the same thing as the
object it refers to.

Another mutable type is list. A list can be cloned with the slice notation: [:]. Try the following in
the Shell:6

nums1 = [1, 2, 3]
nums2 = nums1[:]
nums2.append(4)
nums1
nums2

2.4.8. Animation. Run the example program, backAndForth0.py. The whole program is shown below
for convenience. Then each individual new part of the code is discussed individually:

’’’Test animation and depth.
’’’
from graphics import *
import time

def main():
winWidth = 300

6Actually, lists are even trickier, because the elements of a list are arbitrary: There can still be issues of dependence
between the original and cloned list if the elements of the list are themselves mutable, and then you choose to mutate an
element.

2.4. GRAPHICS 77

winHeight = 300
win = GraphWin(’Back and Forth’, winWidth, winHeight)
win.setCoords(0, 0, winWidth, winHeight)

rect = Rectangle(Point(200, 90), Point(220, 100))
rect.setFill("blue")
rect.draw(win)

cir1 = Circle(Point(40,100), 25)
cir1.setFill("yellow")
cir1.draw(win)

cir2 = Circle(Point(150,125), 25)
cir2.setFill("red")
cir2.draw(win)

for i in range(46): # animate cir1 to the right
cir1.move(5, 0)
time.sleep(.05)

for i in range(46): # animate cir1 to the left
cir1.move(-5, 0)
time.sleep(.05)

Wait for a final click to exit
Text(Point(winWidth/2, 20), ’Click anywhere to quit.’).draw(win)
win.getMouse()
win.close()

main()

Read the discussion below of pieces of the code from the program above. Do not try to execute fragments
alone.

There is a new form of import statement:
from graphics import *
import time

The program uses a function from the time module. The syntax used for the time module is actually the
safer and more typical way to import a module. As you will see later in the program, the sleep function
used from the time module will be referenced as time.sleep(). This tells the Python interpreter to look
in the time module for the sleep function.

If we had used the import statement
from time import *

then the sleep function could just be referenced with sleep(). This is obviously easier, but it obscures
the fact that the sleep function is not a part of the current module. Also several modules that a program
imports might have functions with the same name. With the individual module name prefix, there is no
ambiguity. Hence the form import moduleName is actually safer than from moduleName import *.

You might think that all modules could avoid using any of the same function names with a bit of
planning. To get an idea of the magnitude of the issue, have a look at the number of modules available to
Python. Try the following in the in the Shell (and likely wait a number of seconds):

help(’modules’)

Without module names to separate things out, it would be very hard to totally avoid name collisions with
the enormous number of modules you see displayed, that are all available to Python!

Back to the current example program: The main program starts with standard window creation, and
then makes three objects:

2.4. GRAPHICS 78

rect = Rectangle(Point(200, 90), Point(220, 100))
rect.setFill("blue")
rect.draw(win)

cir1 = Circle(Point(40,100), 25)
cir1.setFill("yellow")
cir1.draw(win)

cir2 = Circle(Point(150,125), 25)
cir2.setFill("red")
cir2.draw(win)

Zelle’s reference pages do not mention the fact that the order in which these object are first drawn is
significant. If objects overlap, the ones which used the draw method later appear on top. Other object
methods like setFill or move do not alter which are in front of which. This becomes significant when cir1
moves. The moving cir1 goes over the rectangle and behind cir2. (Run the program again if you missed
that.)

The animation starts with the code for a simple repeat loop:
for i in range(46): # animate cir1 to the right

cir1.move(5, 0)
time.sleep(.05)

This very simple loop animates cir1 moving in a straight line to the right. As in a movie, the illusion of
continuous motion is given by jumping only a short distance each time (increasing the horizontal coordinate
by 5). The time.sleep function, mentioned earlier, takes as parameter a time in seconds to have the program
sleep, or delay, before continuing with the iteration of the loop. This delay is important, because modern
computers are so fast, that the intermediate motion would be invisible without the delay. The delay can be
given as a decimal, to allow the time to be a fraction of a second.

The next three lines are almost identical to the previous lines, and move the circle to the left (-5 in the
horizontal coordinate each time).

for i in range(46): # animate cir1 to the left
cir1.move(-5, 0)
time.sleep(.05)

The window closing lines of this program include a slight shortcut from earlier versions.
Text(Point(winWidth/2, 20), ’Click anywhere to quit.’).draw(win)

The text object used to display the final message only needs to be referred to once, so a variable name is
not necessary: The result of the Text object returned by the constructor is immediately used to draw the
object. If the program needed to refer to this object again, this approach would not work.

The next example program, backAndForth1.py, it just a slight variation, looking to the user just like the
last version. Only the small changes are shown below. This version was written after noticing how similar
the two animation loops are, suggesting an improvement to the program: Animating any object to move in
a straight line is a logical abstraction well expressed via a function.

The loop in the initial version of the program contained a number of arbitrarily chosen constants, which
make sense to turn into parameters. Also, the object to be animated does not need to be cir1, it can be
any of the drawable objects in the graphics package. The name shape is used to make this a parameter:

def moveOnLine(shape, dx, dy, repetitions, delay):
for i in range(repetitions):

shape.move(dx, dy)
time.sleep(delay)

Then in the main function the two similar animation loops are reduced to a line for each direction:
moveOnLine(cir1, 5, 0, 46, .05)
moveOnLine(cir1, -5, 0, 46, .05)

2.4. GRAPHICS 79

Make sure you see these two lines with function calls behave the same way as the two animation loops in
the main program of the original version.

Run the next example version, backAndForth2.py. The changes are more substantial here, and the
display of the whole program is followed by display and discussion of the individual changes:

’’’Test animation of a group of objects making a face.
’’’
from graphics import *
import time

def moveAll(shapeList, dx, dy):
’’’ Move all shapes in shapeList by (dx, dy).’’’
for shape in shapeList:

shape.move(dx, dy)

def moveAllOnLine(shapeList, dx, dy, repetitions, delay):
’’’Animate the shapes in shapeList along a line.
Move by (dx, dy) each time.
Repeat the specified number of repetitions.
Have the specified delay (in seconds) after each repeat.
’’’

for i in range(repetitions):
moveAll(shapeList, dx, dy)
time.sleep(delay)

def main():
winWidth = 300
winHeight = 300
win = GraphWin(’Back and Forth’, winWidth, winHeight)
win.setCoords(0, 0, winWidth, winHeight) # make right side up coordinates!

rect = Rectangle(Point(200, 90), Point(220, 100))
rect.setFill("blue")
rect.draw(win)

head = Circle(Point(40,100), 25)
head.setFill("yellow")
head.draw(win)

eye1 = Circle(Point(30, 105), 5)
eye1.setFill(’blue’)
eye1.draw(win)

eye2 = Line(Point(45, 105), Point(55, 105))
eye2.setWidth(3)
eye2.draw(win)

mouth = Oval(Point(30, 90), Point(50, 85))
mouth.setFill("red")
mouth.draw(win)

faceList = [head, eye1, eye2, mouth]

2.4. GRAPHICS 80

cir2 = Circle(Point(150,125), 25)
cir2.setFill("red")
cir2.draw(win)

moveAllOnLine(faceList, 5, 0, 46, .05)
moveAllOnLine(faceList, -5, 0, 46, .05)

Text(Point(winWidth/2, 20), ’Click anywhere to quit.’).draw(win)
win.getMouse()
win.close()

main()
Read the following discussion of program parts.

Moving a single elementary shape is rather limiting. It is much more interesting to compose a more
complicated combination, like the face from the earlier example face.py. To animate such a combination,
you cannot use the old moveOnLine function, because we want all the parts to move together, not one eye
all the way across the screen and then have the other eye catch up! A variation on moveOnLine is needed
where all the parts move together. We need all the parts of the face to move one step, sleep, and all move
again, This could all be coded in a single method, but there are really two ideas here:

(1) Moving a group of objects one step.
(2) Animating a number of moves for the group.

This suggests two functions. Another issue is how to handle a group of elementary graphics objects. The
most basic combination of objects in Python is a list, so we assume a parameter shapeList, which is a
list of elementary graphics objects. For the first function, moveAll, just move all the objects in the list
one step. Since we assume a list of objects and we want to move each, this suggests a for-each loop:

def moveAll(shapeList, dx, dy):
’’’ Move all shapes in shapeList by (dx, dy).’’’
for shape in shapeList:

shape.move(dx, dy)

Having this function, we can easily write the second function moveAllOnLine, with a simple change from
the moveOnLine function, substituting the moveAll function for the line with the move method:

def moveAllOnLine(shapeList, dx, dy, repetitions, delay):
’’’Animate the shapes in shapeList along a line.
Move by (dx, dy) each time.
Repeat the specified number of repetitions.
Have the specified delay (in seconds) after each repeat.
’’’

for i in range(repetitions):
moveAll(shapeList, dx, dy)
time.sleep(delay)

The code in main to construct the face is the same as in the earlier example face.py. Once all the pieces
are constructed and colored, they must be placed in a list, for use in moveAllOnLine:

faceList = [head, eye1, eye2, mouth]
Then, later, the animation uses the faceList to make the face go back and forth:

moveAllOnLine(faceList, 5, 0, 46, .05)
moveAllOnLine(faceList, -5, 0, 46, .05)

This version of the program has encapsulated and generalized the moving and animating by creating functions
and adding parameters that can be substituted. Again, make sure you see how the functions communicate
to make the whole program work. This is an important and non-trivial use of functions.

2.4. GRAPHICS 81

Run the example program backAndForth3.py.
The final version, backAndForth3.py, uses the observation that the code to make a face embodies one

unified idea, suggesting encapsulation inside a function. Once you have encapsulated the code to make a
face, we can make several faces! Then the problem with the original code for the face is that all the positions
for the facial elements are hard-coded: The face can only be drawn in one position. The full listing of
backAndForth3.py below includes a makeFace function with a parameter for the position of the center of
the face.

Beneath the listing of the whole program is a discussion of the individual changes:
’’’Test animation of a group of objects making a face.
Combine the face elements in a function, and use it twice.
Have an extra level of repetition in the animation.
’’’

from graphics import *
import time

def moveAll(shapeList, dx, dy):
’’’ Move all shapes in shapeList by (dx, dy).’’’
for shape in shapeList:

shape.move(dx, dy)

def moveAllOnLine(shapeList, dx, dy, repetitions, delay):
’’’Animate the shapes in shapeList along a line.
Move by (dx, dy) each time.
Repeat the specified number of repetitions.
Have the specified delay (in seconds) after each repeat.
’’’

for i in range(repetitions):
moveAll(shapeList, dx, dy)
time.sleep(delay)

def makeFace(center, win): #NEW
’’’display face centered at center in window win.
Return a list of the shapes in the face.
’’’

head = Circle(center, 25)
head.setFill("yellow")
head.draw(win)

eye1Center = center.clone() # face positions are relative to the center
eye1Center.move(-10, 5) # locate further points in relation to others
eye1 = Circle(eye1Center, 5)
eye1.setFill(’blue’)
eye1.draw(win)

eye2End1 = eye1Center.clone()
eye2End1.move(15, 0)
eye2End2 = eye2End1.clone()
eye2End2.move(10, 0)
eye2 = Line(eye2End1, eye2End2)
eye2.setWidth(3)
eye2.draw(win)

2.4. GRAPHICS 82

mouthCorner1 = center.clone()
mouthCorner1.move(-10, -10)
mouthCorner2 = mouthCorner1.clone()
mouthCorner2.move(20, -5)
mouth = Oval(mouthCorner1, mouthCorner2)
mouth.setFill("red")
mouth.draw(win)

return [head, eye1, eye2, mouth]

def main():
winWidth = 300
winHeight = 300
win = GraphWin(’Back and Forth’, winWidth, winHeight)
win.setCoords(0, 0, winWidth, winHeight) # make right side up coordinates!

rect = Rectangle(Point(200, 90), Point(220, 100))
rect.setFill("blue")
rect.draw(win)

faceList = makeFace(Point(40, 100), win) #NEW
faceList2 = makeFace(Point(150,125), win) #NEW

stepsAcross = 46 #NEW section
dx = 5
dy = 3
wait = .05
for i in range(3):

moveAllOnLine(faceList, dx, 0, stepsAcross, wait)
moveAllOnLine(faceList, -dx, dy, stepsAcross//2, wait)
moveAllOnLine(faceList, -dx, -dy, stepsAcross//2, wait)

Text(Point(winWidth/2, 20), ’Click anywhere to quit.’).draw(win)
win.getMouse()
win.close()

main()

Read the following discussion of program parts.
As mentioned above, the face construction function allows a parameter to specify where the center of

the face is. The other parameter is the GraphWin that will contain the face.

def makeFace(center, win):

then the head is easily drawn, using this center, rather than cir1 with specific center point (40, 100):

head = Circle(center, 25)
head.setFill("yellow")
head.draw(win)

For the remaining Points used in the construction there is the issue of keeping the right relation to the center.
This is accomplished much as in the creation of the second corner point in the makeRectange function in
Section 2.4.6. A clone of the original center Point is made, and then moved by the difference in the positions
of the originally specified Points. For instance, in the original face, the center of the head and first eye were
at (40, 110) and (30, 115). That means a shift between the two coordinates of (-10, 5), since 30-40 = -10
and 130-110 = 20.

2.4. GRAPHICS 83

eye1Center = center.clone() # face positions are relative to the center
eye1Center.move(-10, 5) # locate further points in relation to others
eye1 = Circle(eye1Center, 5)
eye1.setFill(’blue’)
eye1.draw(win)

The only other changes to the face are similar, cloning and moving Points, rather than specifying them with
explicit coordinates.

eye2End1 = eye1Center.clone()
eye2End1.move(15, 0)
eye2End2 = eye2End1.clone()
eye2End2.move(10, 0)
eye2 = Line(eye2End1, eye2End2)
eye2.setWidth(3)
eye2.draw(win)

mouthCorner1 = center.clone()
mouthCorner1.move(-10, -10)
mouthCorner2 = mouthCorner1.clone()
mouthCorner2.move(20, -5)
mouth = Oval(mouthCorner1, mouthCorner2)
mouth.setFill("red")
mouth.draw(win)

Finally, the list of elements for the face must be returned to the caller:
return [head, eye1, eye2, mouth]

Then in the main function, the program creates a face in exactly the same place as before, but using the
makeFace function, with the original center of the face Point(40, 100). Now with the makeFace function,
with its center parameter, it is also easy to replace the old cir2 with a whole face!

faceList = makeFace(Point(40, 100), win)
faceList2 = makeFace(Point(150,125), win)

The animation section is considerably elaborated in this version.
stepsAcross = 46
dx = 5
dy = 3
wait = .01
for i in range(3):

moveAllOnLine(faceList, dx, 0, stepsAcross, wait)
moveAllOnLine(faceList, -dx, dy, stepsAcross//2, wait)
moveAllOnLine(faceList, -dx, -dy, stepsAcross//2, wait)

The unidentified numeric literals that were used before are replaced by named values that easily identify the
meaning of each one. This also allows the numerical values to be stated only once, allowing easy modification.

The whole animation is repeated three times by the use of a simple repeat loop.
The animations in the loop body illustrate that the straight line of motion does not need to be horizontal.

The second and third lines use a non-zero value of both dx and dy for the steps, and move diagonally.
Make sure you see now how the whole program works together, including all the parameters for the

moves in the loop.
By the way, the documentation of the functions in a module you have just run in the Shell is directly

available. Try in the Shell:
help(moveAll)

Exercise 2.4.8.1. ** Save backAndForth3.py to the new name backAndForth4.py. Add a triangular
nose in the middle of the face in the makeFace function. Like the other features of the face, make sure the

2.4. GRAPHICS 84

position of the nose is relative to the center parameter. Make sure the nose is included in the final list of
elements of the face that get returned.

Exercise 2.4.8.2. ** Make a program faces.py that asks the user to click the mouse, and then draws
a face at the point where the user clicked. Elaborate this with a simple repeat loop, so a face appears for
each of 6 clicks.

Exercise 2.4.8.3. ** Animate two faces moving in different directions at the same time in a program
move2Faces.py. You cannot use the moveAllOnLine function. You will have to make a variation of your
own. You can use the moveAll function separately for each face. Hint: imagine the old way of making an
animated cartoon. If each face was on a separate piece of paper, and you wanted to animate them moving
together, you would place them separately, record one frame, move them each a bit toward each other, record
another frame, move each another bit toward each other, record another frame, In our animations “record
a frame” is replaced by a short sleep to make the position visible to the user. Make a loop to incorporate
the repetition of the moves.

2.4.9. Entry Objects. Read this section if you want to allow the user to enter text directly into a
graphics window.

When using a graphics window, the shell window is still available. Keyboard input can be done in the
normal text fashion, waiting for a response, and going on after the user presses the enter key. It is annoying
to make a user pay attention to two windows, so the graphics module provides a way to enter text inside a
graphics window, with the Entry type. The entry is a partial replacement for the input function.

Run the simple example, greet.py, which is copied below:
"""Simple example with Entry objects.
Enter your name, click the mouse, and see greetings.
"""

from graphics import *

def main():
winWidth = 300
winHeight = 300
infoHeight = 15
win = GraphWin("Greeting", winWidth, winHeight)
win.setCoords(0,0, winWidth, winHeight)

instructions = Text(Point(winWidth/2, 40),
"Enter your name.\nThen click the mouse.")

instructions.draw(win)

entry1 = Entry(Point(winWidth/2, 200),10)
entry1.draw(win)
Text(Point(winWidth/2, 230),’Name:’).draw(win) # label for the Entry

win.getMouse() # To know the user is finished with the text.
name = entry1.getText()

greeting1 = ’Hello, ’ + name + ’!’
Text(Point(winWidth/3, 150), greeting1).draw(win)

greeting2 = ’Bonjour, ’ + name + ’!’
Text(Point(2*winWidth/3, 100), greeting2).draw(win)

instructions.setText("Click anywhere to quit.")
win.getMouse()
win.close()

2.4. GRAPHICS 85

main()

The only part of this with new ideas is:
entry1 = Entry(Point(winWidth/2, 200),10)
entry1.draw(win)
Text(Point(winWidth/2, 230),’Name:’).draw(win) # label for the Entry

win.getMouse() # To know the user is finished with the text.
name = entry1.getText()

The first line of this excerpt creates an Entry object, supplying its center point and a number of characters
to leave space for (10 in this case).

As with other places where input is requested, a separate static label is added.
The way the underlying events are hidden in graphics.py, there is no signal when the user is done entering

text in an Entry box. To signal the program, a mouse press is used above. In this case the location of the
mouse press is not relevant, but once the mouse press is processed, execution can go on to reading the Entry
text. The method name getText is the same as that used with a Text object.

Run the next example, addEntries.py, also copied below:
"""Example with two Entry objects and type conversion.
Do addition.
"""

from graphics import *

def main():
winWidth = 300
winHeight = 300

win = GraphWin("Addition", winWidth, winHeight)
win.setCoords(0,0, winWidth, winHeight)
instructions = Text(Point(winWidth/2, 30),

"Enter two numbers.\nThen click the mouse.")
instructions.draw(win)

entry1 = Entry(Point(winWidth/2, 250),25)
entry1.setText(’0’)
entry1.draw(win)
Text(Point(winWidth/2, 280),’First Number:’).draw(win)

entry2 = Entry(Point(winWidth/2, 180),25)
entry2.setText(’0’)
entry2.draw(win)
Text(Point(winWidth/2, 210),’Second Number:’).draw(win)

win.getMouse() # To know the user is finished with the text.

numStr1 = entry1.getText()
num1 = int(numStr1)
numStr2 = entry2.getText()
num2 = int(numStr2)
result = "The sum of\n{num1}\nplus\n{num2}\nis {sum}.".format(**locals())
Text(Point(winWidth/2, 110), result).draw(win)

instructions.setText("Click anywhere to quit.")

2.4. GRAPHICS 86

win.getMouse()
win.close()

main()

There is not a separate graphical replacement for the input statement, so you only can read strings. With
conversions, it is still possible to work with numbers.

Only one new graphical method has been included above:
entry1.setText(’0’)

Again the same method name is used as with a Text object. In this case I chose not to leave the Entry
initially blank. The 0 value also reinforces that a numerical value is expected.

There is also an entry2 with almost identical code. After waiting for a mouse click, both entries are
read, and the chosen names emphasizes they are strings. The strings must be converted to integers in order
to do arithmetic and display the result.

The almost identical code for the two entries is a strong suggestion that this code could be written more
easily with a function. You may look at the identically functioning example program addEntries2.py. The
only changes are shown below. First there is a function to create an Entry and a centered static label over
it.

def makeLabeledEntry(entryCenterPt, entryWidth, initialStr, labelText, win):
’’’Return an Entry object with specified center, width in characters, and
initial string value. Also create a static label over it with
specified text. Draw everything in the GraphWin win.
’’’

entry = Entry(entryCenterPt, entryWidth)
entry.setText(initialStr)
entry.draw(win)
labelCenter = entryCenterPt.clone()
labelCenter.move(0, 30)
Text(labelCenter,labelText).draw(win)
return entry

In case I want to make more Entries with labels later, and refer to this code again, I put some extra effort
in, making things be parameters even if only one value is used in this program. The position of the label is
made 30 units above the entry by using the clone and move methods. Only the Entry is returned, on the
assumption that the label is static, and once it is drawn, I can forget about it.

Then the corresponding change in the main function is just two calls to this function:
entry1 = makeLabeledEntry(Point(winWidth/2, 250), 25,

’0’, ’First Number:’, win)
entry2 = makeLabeledEntry(Point(winWidth/2, 180), 25,

’0’, ’Second Number:’, win)

These lines illustrate that a statement may take more than one line. In particular, as in the Shell, Python
is smart enough to realize that there must be a continuation line if the parentheses do not match.

While I was improving things, I also changed the conversions to integers. In the first version I wanted
to emphasize the existence of both the string and integer data as a teaching point, but the num1Str and
num2Str variables were only used once, so a more concise way to read and convert the values is to eliminate
them:

num1 = int(entry1.getText())
num2 = int(entry2.getText())

2.4.10. Color Names. Thus far we have only used common color names. In fact there are a very large
number of allowed color names, and the abiltity to draw with custom colors.

2.4. GRAPHICS 87

First, the graphics package is built on an underlying graphics system, Tkinter, which has a large number
of color names defined. Each of the names can be used by itself, like ’red’, ’salmon’ or ’aquamarine’ or with
a lower intensity by specifying with a trailing number 2, 3, or 4, like ’red4’ for a dark red.

Though the ideas for the coding have not all been introduced, it is still informative to run the example
program colors.py. As you click the mouse over and over, you see the names and appearances of a wide
variety of built-in color names. The names must be place in quotes, but capitalization is ignored.

2.4.11. Custom Colors. Custom colors can also be created. To do that requires some understanding
of human eyes and color (and the Python tools). The only colors detected directly by the human eyes are
red, green, and blue. Each amount is registered by a different kind of cone cell in the retina. As far as the
eye is concerned, all the other colors we see are just combinations of these three colors. This fact is used
in color video screens: they only directly display these three colors. A common scale to use in labeling the
intensity of each of the basic colors (red, green, blue) is from 0 to 255, with 0 meaning none of the color, and
255 being the most intense. Hence a color can be described by a sequence of red, green, and blue intensities
(often abbreviated RGB). The graphics package has a function, color_rgb, to create colors this way. For
instance a color with about half the maximum red intensity, no green, and maximum blue intensity would
be

aColor = color_rgb(128, 0, 255)
Such a creation can be used any place a color is used in the graphics, (i.e. circle.setFill(aColor)).

2.4.12. Random Colors. Another interesting use of the color_rgb function is to create random
colors. Run example program randomCircles.py. The code also is here:

"""Draw random circles.
"""

from graphics import *
import random, time

def main():
win = GraphWin("Random Circles", 300, 300)
for i in range(75):

r = random.randrange(256)
b = random.randrange(256)
g = random.randrange(256)
color = color_rgb(r, g, b)

radius = random.randrange(3, 40)
x = random.randrange(5, 295)
y = random.randrange(5, 295)

circle = Circle(Point(x,y), radius)
circle.setFill(color)
circle.draw(win)
time.sleep(.05)

Text(Point(150, 20), "Click to close.").draw(win)
win.getMouse()
win.close()

main()
Read the fragments of this program and their explanations:

To do random things, the program needs a function from the random module. This example shows that
imported modules may be put in a comma separated list:

import random, time

2.5. FILES 88

You have already seen the built-in function range. To generate a sequence of all the integers 0, 1, ... 255,
you would use

range(256)
This is the full list of possible values for the red, green or blue intensity parameter. For this program
we randomly choose any one element from this sequence. Instead of the range function, use the random
module’s randrange function, as in

r = random.randrange(256)
b = random.randrange(256)
g = random.randrange(256)
color = color_rgb(r, g, b)

This gives randomly selected values to each of r, g, and b, which are then used to create the random color.
I want a random circle radius, but I do not want a number as small as 0, making it invisible. The range

and randrange functions both refer to a possible sequence of values starting with 0 when a single parameter
is used. It is also possible to add a different starting value as the first parameter. You still must specify a
value past the end of the sequence. For instance

range(3, 40)
would refer to the sequence 3, 4, 5, ... , 39 (starting with 3 and not quite reaching 40). Similarly

random.randrange(3, 40)
randomly selects an arbitrary element of range(3, 40).

I use the two-parameter version to select random parameters for a Circle:
radius = random.randrange(3, 40)
x = random.randrange(5, 295)
y = random.randrange(5, 295)

circle = Circle(Point(x,y), radius)
What are the smallest and largest values I allow for x and y? 7

Random values are often useful in games.

Exercise 2.4.12.1. * Write a program ranges.py that uses the range function to produce the sequnce
1, 2, 3, 4, and then print it. Also prompt the user for an integer n and print the sequnce 1, 2, 3, ... , n –
including n. Hint: 8 Finally use a simple repeat loop to find and print five randomly chosen numbers from
the range 1, 2, 3, ... , n .

2.5. Files

This section fits here logically (as an important built-in type of object) but it is not needed for the next
chapter, Flow of Control, 3.

Thus far you have been able to save programs, but anything produced during the execution of a program
has been lost when the program ends. Data has not persisted past the end of execution. Just as programs
live on in files, you can generate and read data files in Python that persist after your program has finished
running.

As far as Python is concerned, a file is just a string (often very large!) stored on your file system, that
you can read or write gradually or all together.

Open a directory window for your Python program directory. First note that there is no file named
sample.txt.

Make sure you have started Idle so the current directory is your Python program directory (for instance
in Windows with the downloaded shortcut to Idle).

Run the example program firstFile.py, shown below:
outFile = open(’sample.txt’, ’w’)
outFile.write(’My first output file!’)
outFile.close()

75 and 294 (one less than 295).
8If 4 or n is the last number, what is the first number past the end of the sequence?

2.5. FILES 89

The first line creates a file object, which links Python to your computer’s file system. The first parameter in
the file constructor gives the file name, sample.txt. The second parameter indicates how you use the file.
The ’w’ is short for write, so you will be creating and writing to a file (or if it already existed, destroying
the old contents and starting over!). If you do not use any operating system directory separators in the
name (’\’ or ’/’ depending on your operating system), then the file will lie in the current directory. The
assignment statement gives the python file object the name outFile.

The second line writes the specified string to the file.
The last line is important to clean up. Until this line, this Python program controls the file, and nothing

may even be actually written to the file. (Since file operations are thousands of times slower than memory
operations, Python buffers data, saving small amounts and writing all at once in larger chunks.) The close
line is essential for Python to make sure everything is really written, and to relinquish control of the file. It
is a common bug to write a program where you have the code to add all the data you want to a file, but the
program does not end up creating a file. Usually this means you forgot to close the file.

Now switch focus and look at a file window for the current directory. You should now see a file
sample.txt. You can open it in Idle (or your favorite word processor) and see its contents.

Run the example program nextFile.py, shown below, which has two calls to the write method:
outFile = open(’sample2.txt’, ’w’)
outFile.write(’My second output file!
outFile.write(’Write some more.’)
outFile.close()

Now look at the file, sample2.txt. Open it in Idle. It may not be what you expect! The write method for
the file is not quite like a print function. It does not add anything to the file except exactly the data you
tell it to write. If you want a newline, you must indicate it explicitly. Recall the newline code \n. Run the
example program revisedFile.py, shown below, which adds newline codes:

outFile = open(’sample3.txt’, ’w’)
outFile.write(’A revised output file!\n’)
outFile.write(’Write some more.\n’)
outFile.close()

Check the contents of sample3.txt. This manner of checking the file shows it is really in the file system,
but the focus in the Tutorial should be on using Python! Run the example program printFile.py, shown
below:

inFile = open(’sample3.txt’, ’r’)
contents = inFile.read()
print(contents)

Now you have come full circle: what one Python program has written into the file sample3.txt, another has
read and displayed.

In the first line an operating system file (sample3.txt) is associated again with a Python variable name
(inFile). The second parameter again gives the mode of operation, but this time it is ’r’, short for read.
This file, sample3.txt, should already exist, and the intention is to read from it. This is the most common
mode for a file, so the ’r’ parameter is actually optional.

The read method returns all the file’s data as a single string, here assigned to contents. Using the
close method is generally optional with files being read. There is nothing to lose if a program ends without
closing a file that was being read.9

Exercise 2.5.0.2. Make the following programs in sequence. Be sure to save the programs in the same
directory as where you start the idle shortcut and where you have all the sample text files:
* a. printUpper.py: read the contents of the sample2.txt file and print the contents out in upper case. (This
should use file operations and should work no matter what the contents are in sample2.txt. Do not assume
the particular string written by nextFile.py!)
* b. fileUpper.py: prompt the user for a file name, read and print the contents of the requested file in upper
case.

9If, for some reason, you want to reread this same file while the same program is running, you need to close it and reopen
it.

2.6. SUMMARY 90

** c. copyFileUpper: modify fileUpper.py to write the upper case string to a new file rather than printing
it. Have the name of the new file be dynamically derived from the old name by prepending ’UPPER’ to
the name. For example, if the user specified the file sample.txt (from above), the program would create
a file UPPERsample.txt, containing ’MY FIRST OUTPUT FILE!’. When the user specifies the file name
stuff.txt, the resulting file would be named UPPERstuff.txt.

Exercise 2.5.0.3. Write madlib3.py, a small modification of madlib2.py, requiring only a modification
to the main function of madlib2.py. Your madlib3.py should prompt the user for the name of a file that
should contain a madlib format string as text (with no quotes around it). Read in this file and use it as the
format string in the tellStory function. This is unlike in madlib2.py, where the story is a literal string
coded directly into the program called originalStory. The tellstory function and particularly the getKeys
function were developed and described in detail in this tutorial, but for this exercise there is no need to
follow their inner workings - you are just a user of the tellstory function (and the functions that it calls).
You do not need to mess with the code for the definition of tellStory or any of the earlier supporting
functions. The original madlib string is already placed in a file jungle.txt, that is in this format as an
example. With the Idle editor, write another madlib format string into a file myMadlib.txt. If you earlier
created a file myMadlib.py, then you can easily extract the story from there (without the quotes around it).
Test your program both with jungle.txt and your new madlib story file.

2.6. Summary

The same typographical conventions will be used as in the last summary in Section 1.15.
(1) Object notation

(a) When the name of a type of object is used as a function call, it is called a constructor, and a
new object of that type is constructed and returned. The meanings of any parameters to the
constructor depend on the type. [2.2.3]

(b) object.methodName(parameters)
Objects may have special operations associated with them, called methods. They are functions
automatically applied to the object before the dot. Further parameters may be expected,
depending on the particular method. [2.1.1]

(2) String (str) indexing and methods
See the Chapter 1 Summary Section 1.15 for string literals and symbolic string operations.
(a) String Indexing. [2.1.2]

stringReference[intExpression]
Individual characters in a string may be chosen. If the string has length L, then the indices
start from 0 for the initial character and go to L-1 for the rightmost character. Negative
indices may also be used to count from the right end, -1 for the rightmost character through
-L for the leftmost character. Strings are immutable, so individual characters may be read,
but not set.

(b) String Slices [2.1.3]
stringReference[start : pastEnd]
stringReference[start :]
stringReference[: pastEnd]
stringReference[:]
A substring or slice of 0 or more consecutive characters of a string may be referred to by
specifying a starting index and the index one past the last character of the substring. If the
starting or ending index is left out Python uses 0 and the length of the string respectively.
Python assumes indices that would be beyond an end of the string actually mean the end of
the string.

(c) String Methods: Assume s refers to a string
(i) s.upper()

Returns an uppercase version of the string s. [2.1.1]
(ii) s.lower()

Returns a lowercase version of the string s.[2.1.1]

2.6. SUMMARY 91

(iii) s.count(sub)
Returns the number of repetitions of the substring sub inside s. [2.1.1]

(iv) s.find(sub)
s.find(sub, start)
s.find(sub, start, end)
Returns the index in s of the first character of the first occurrence of the substring sub
within the part of the string s indicated, respectively the whole string s, s[start :],
or s[start : end], where start and end have integer values.[2.1.1]

(v) s.split()
s.split(sep)
The first version splits s at any sequence of whitespace (blanks, newlines, tabs) and
returns the remaining parts of s as a list. If a string sep is specified, it is the separator
that gets removed from between the parts of the list. [2.1.5]

(vi) sep.join(sequence)
Return a new string obtained by joining together the sequence of strings into one string,
interleaving the string sep between sequence elements. [2.1.6]

(vii) Further string methods are discussed in the Python Reference Manual, Section 2.3.6.1,
String Methods. [2.1.7]

(3) Sets
A set is a collection of elements with no repetitions. It can be used as a sequence in a for loop.
A set constructor can take any other sequence as a parameter, and convert the sequence to a set
(with no repetitions). Nonempty set literals are enclosed in braces. [2.2.2]

(4) List method append
aList.append(element)
Add an arbitrary element to the end of the list aList, mutating the list, not returning any list.
[2.2.1]

(5) Files [2.5]
file(nameInFileSystem) returns a file object for reading, where nameInFileSystem must be a

string referring to an existing file. The file location is relative to the current directory.
file(nameInFileSystem, ’w’) returns a file object for writing, where the string nameInFileSystem

will be the name of the file. If it did not exist before, it is created. CAUTION: If it did
exist before, all previous contents are erased. The file location is relative to the current
directory.

If infile is a file opened for reading, and outfile is a file opened for writing, then
infile.read() returns the entire file contents of the file as a string.
infile.close() closes the file in the operating system (generally not needed, unless

the file is going to be modified later, while your program is still running).
outfile.write(stringExpression) writes the string to the file, with no extra new-

line.
outfile.close() closes the file in the operating system (important to make sure the

whole file gets written and to allow other access to the file).
(6) Mutable objects [2.4.6]

Care must be taken whenever a second name is assigned to a mutable object. It is an alias for the
original name, and refers to the exact same object. A mutating method applied to either name
changes the one object referred to by both names.

Many types of mutable object have ways to make a copy that is a distinct object. Zelle’s graphical
objects have the clone method. A copy of a list may be made with a full slice: someList[:]. Then
direct mutations to one list (like appending an element) do not affect the other list, but still, each
list is indirectly changed if a common mutable element in the lists is changed.

(7) Graphics
A systematic reference to Zelle’s graphics package, graphics.py, is at http://mcsp.wartburg.edu/
zelle/python/graphics/graphics/index.html.

2.6. SUMMARY 92

(a) Introductory examples of using graphics.py are in [2.4.1], [2.4.2], and [2.4.9]
(b) Windows operating system .pyw

In windows, a graphical program that take no console input and generates no console output,
may be given the extension .pyw to suppress the generation of a console window. [2.4.3]

(c) Event-driven programs
Graphical programs are typically event-driven, meaning the next operation done by the pro-
gram can be in response to a large number of possible operations, from the keyboard or mouse
for instance, without the program knowing which kind of event will come next. For simplicity,
this approach is pretty well hidden under Zelle’s graphics package, allowing the illusion of
simpler sequential programming. [2.4.4]

(d) Custom computer colors are expressed in terms of the amounts of red, green, and blue. [2.4.11]
(e) See also Animation under the summary of Programming Techniques.

(8) Additional programming techniques
(a) These techniques extend those listed in the summary of the previous chapter. [1.15]
(b) Sophisticated operations with substrings require careful setting of variables used as an index.

[2.1.4]
(c) There are a number of techniques to assist creative programming, including pseudo-code and

gradual generalization from concrete examples. [2.3.2]
(d) Animation: a loop involving small moves followed by a short delay (assumes the time module

is imported): [2.4.8
loop heading :

move all objects a small step in the proper direction
time.sleep(delay).

(e) Example of a practical successive modification loop: [2.3.1]
(f) Examples of encapsulating ideas in functions and reusing them: [2.3.1], [2.3.3], [2.4.8]
(g) Random results can be introduced into a program using the random module. [2.4.12]

CHAPTER 3

More On Flow of Control

You have varied the normal forward sequence of operations with functions and for loops. To have full
power over your programs, you need two more constructions that changing the flow of control: decisions
choosing between alternatives (if statements), and more general loops that are not required to be controlled
by the elements of a collection (while loops).

3.1. If Statements

3.1.1. Simple Conditions. The statements introduced in this chapter will involve tests or conditions.
More syntax for conditions will be introduced later, but for now consider simple arithmetic comparisons that
directly translate from math into Python. Try each line separately in the Shell

2 < 5
3 > 7
x = 11
x > 10
2*x < x
type(True)

You see that conditions are either True or False (with no quotes). These are the only possible Boolean
values (named after 19th century mathematician George Boole). In Python the name Boolean is shortened
to the type bool. It is the type of the results of true-false tests.

3.1.2. Simple if Statements. Run this example program, suitcase.py. Try it at least twice, with
inputs: 30 and then 55. As you an see, you get an extra result, depending on the input. The main code is:

weight = float(input(’How many pounds does you suitcase weigh? ’))
if weight > 50:

print(’There is a $25 charge for luggage that heavy.’)
print(’Thank you for your business.’)

The middle two line are an if-statement. It reads pretty much like English. If it is true that the weight is
greater than 50, then print the statement about an extra charge. If it is not true that the weight is greater
than 50, then don’t do the indented part: skip printing the extra luggage charge. In any event, when you
have finished with the if-statement (whether it actually does anything or not), go on to the next statement
that is not indented under the if. In this case that is the statement printing “Thank you”.

The general Python syntax for a simple if statement is
if condition :

indentedStatementBlock
If the condition is true, then do the indented statements. If the condition is not true, then skip the indented
statements.

Another fragment as an example:
if balance < 0:

transfer = -balance
backupAccount = backupAccount - transfer # take enough from the backup acct.
balance = balance + transfer

As with other kinds of statements with a heading and an indented block, the block can have more than one
statement. The assumption in the example above is that if an account goes negative, it is brought back to
0 by transferring money from a backup account in several steps.

93

3.1. IF STATEMENTS 94

In the examples above the choice is between doing something (if the condition is True) or nothing (if the
condition is False). Often there is a choice of two possibilities, only one of which will be done, depending
on the truth of a condition.

3.1.3. if-else Statements. Run the example program, clothes.py. Try it at least twice, with inputs:
50, 80. As you can see, you get different results, depending on the input. The main code of clothes.py is:

temperature = float(input(’What is the temperature? ’))
if temperature > 70:

print(’Wear shorts.’)
else:

print(’Wear long pants.’)
print(’Get some exercise outside.’)

The middle four lines are an if-else statement. Again it is close to English, though you might say “oth-
erwise” instead of “else” (but else is shorter!). There are two indented blocks: One, like in the simple if
statement, comes right after the if heading and is executed when the condition in the if heading is true. In
the if-else form this is followed by an else: line, followed by another indented block that is only executed
when the original condition is false. In an if-else statement exactly one of two possible indented blocks is
executed.

A line is also shown outdented next, about getting exercise. Since it is outdented, it is not a part of the
if-else statement: It is always executed in the normal forward flow of statements, after the if-else statement
(whichever block is selected).

The general Python syntax is
if condition :

indentedStatementBlockForTrueCondition
else:

indentedStatementBlockForFalseCondition
These statement blocks can have any number of statements, and can include about any kind of statement.

3.1.4. More Conditional Expressions. All the usual arithmetic comparisons may be made, but
many do not use standard mathematical symbolism, mostly for lack of proper keys on a standard keyboard.

Meaning Math Symbol Python Symbols
Less than < <

Greater than > >
Less than or equal ≤ <=

Greater than or equal ≥ >=
Equals = ==

Not equal 6= !=

There should not be space between the two-symbol Python substitutes.
Notice that the obvious choice for equals, a single equal sign, is not used to check for equality. An

annoying second equal sign is required. This is because the single equal sign is already used for assignment
in Python, so it is not available for tests. It is a common error to use only one equal sign when you mean to
test for equality, and not make an assignment!

Tests for equality do not make an assignment, and they do not require a variable on the left. Any
expressions can be tested for equality or inequality (!=). They do not need to be numbers! Predict the
results and try each line in the Shell:

x = 5
x
x == 5
x == 6
x
x != 6
x = 6

3.1. IF STATEMENTS 95

6 == x
6 != x
’hi’ == ’h’ + ’i’
’HI’ != ’hi’
[1, 2] != [2, 1]

An equality check does not make an assignment. Strings are case sensitive. Order matters in a list.
Try in the Shell:

’a’ > 5
When the comparison does not make sense, an Exception is caused.1

Exercise 3.1.4.1. Write a program, graduate.py, that prompts students for how many credits they
have. Print whether of not they have enough credits for graduation. (At Loyola University Chicago 128
credits are needed for graduation.)

Exercise 3.1.4.2. Following up on the discussion of the inexactness of float arithmetic in Section 1.14.3,
confirm that Python does not consider .1 + .2 to be equal to .3: Write a simple condition into the Shell to
test.

Here is another example: Pay with Overtime. Given a person’s work hours for the week and regular
hourly wage, calculate the total pay for the week, taking into account overtime. Hours worked over 40 are
overtime, paid at 1.5 times the normal rate. This is a natural place for a function enclosing the calculation.

Read the setup for the function:
def calcWeeklyWages(totalHours, hourlyWage):

’’’Return the total weekly wages for a worker working totalHours,
with a given regular hourlyWage. Include overtime for hours over 40.
’’’

The problem clearly indicates two cases: when no more than forty hours are worked or when more than
40 hours are worked. In case more than 40 hours are worked, it is convenient to introduce a variable
overtimeHours. You are encouraged to think about a solution before going on and examining mine.

You can try running my complete example program, wages.py, also shown below. The format operation
at the end of the main function uses the floating point format (Section 1.14.3) to show two decimal places
for the cents in the answer:

def calcWeeklyWages(totalHours, hourlyWage):
’’’Return the total weekly wages for a worker working totalHours,
with a given regular hourlyWage. Include overtime for hours over 40.
’’’

if totalHours <= 40:
totalWages = hourlyWage*totalHours

else:
overtime = totalHours - 40
totalWages = hourlyWage*40 + (1.5*hourlyWage)*overtime

return totalWages

def main():
hours = float(input(’Enter hours worked: ’))
wage = float(input(’Enter dollars paid per hour: ’))
total = calcWeeklyWages(hours, wage)
print(’Wages are ${total:.2f}.’.format(**locals()))

main()
Here the input was intended to be numeric, but it could be decimal so the conversion from string was via
float, not int.

1This is an improvement that is new in Python 3.0

3.1. IF STATEMENTS 96

Below is an equivalent alternative version of the body of calcWeeklyWages, used in wages1.py. It uses
just one general calculation formula and sets the parameters for the formula in the if statement. There are
generally a number of ways you might solve the same problem!

if totalHours <= 40:
regularHours = totalHours
overtime = 0

else:
overtime = totalHours - 40
regularHours = 40

return hourlyWage*regularHours + (1.5*hourlyWage)*overtime

3.1.5. Multiple Tests and if-elif Statements . Often you want to distinguish between more than
two distinct cases, but conditions only have two possible results, True or False, so the only direct choice is
between two options. As anyone who has played “20 Questions” knows, you can distinguish more cases by
further questions. If there are more than two choices, a single test may only reduce the possibilities, but
further tests can reduce the possibilities further and further. Since most any kind of statement can be placed
in an indented statement block, one choice is a further if statement. For instance consider a function to
convert a numerical grade to a letter grade, ’A’, ’B’, ’C’, ’D’ or ’F’, where the cutoffs for ’A’, ’B’, ’C’, and
’D’ are 90, 80, 70, and 60 respectively. One way to write the function would be test for one grade at a time,
and resolve all the remaining possibilities inside the next else clause:

def letterGrade(score):
if score >= 90:

letter = ’A’
else: # grade must be B, C, D or F

if score >= 80:
letter = ’B’

else: # grade must be C, D or F
if score >= 70:

letter = ’C’
else: # grade must D or F

if score >= 60:
letter = ’D’

else:
letter = ’F’

return letter

This repeatedly increasing indentation with an if statement as the else block can be annoying and dis-
tracting. A preferred alternative in this situation, that avoids all this indentation, is to combine each else
and if block into an elif block:

def letterGrade(score):
if score >= 90:

letter = ’A’
elif score >= 80:

letter = ’B’
elif score >= 70:

letter = ’C’
elif score >= 60:

letter = ’D’
else:

letter = ’F’
return letter

The most elaborate syntax for an if statement, if-elif-...-else is indicated in general below:
if condition1 :

3.1. IF STATEMENTS 97

indentedStatementBlockForTrueCondition1
elif condition2 :

indentedStatementBlockForFirstTrueCondition2
elif condition3 :

indentedStatementBlockForFirstTrueCondition3
elif condition4 :

indentedStatementBlockForFirstTrueCondition4
else:

indentedStatementBlockForEachConditionFalse
The if, each elif, and the final else line are all aligned. There can be any number of elif lines, each
followed by an indented block. (Three happen to be illustrated above.) With this construction exactly one
of the indented blocks is executed. It is the one corresponding to the first True condition, or, if all conditions
are False, it is the block after the final else line.

Be careful of the strange Python contraction. It is elif, not elseif. A program testing the letterGrade
function is in example program grade1.py.

Exercise 3.1.5.1. In Idle, load grade1.py and save it as grade2.py Modify grade2.py so it has an
equivalent version of the letterGrade function that tests in the opposite order, first for F, then D, C,
Hint: How many tests do you need to do? 2 Be sure to run your new version and test with different inputs
that test all the different paths through the program.

Exercise 3.1.5.2. Write a program sign.py to ask the user for a number. Print out which category
the number is in: ’positive’, ’negative’, or ’zero’.

Exercise 3.1.5.3. Modify the wages.py or the wages1.py example to create a program wages2.py that
assumes people are paid double time for hours over 60. Hence they get paid for at most 20 hours overtime
at 1.5 times the normal rate. For example, a person working 65 hours with a regular wage of $10 per hour
would work at $10 per hour for 40 hours, at 1.5*$10 for 20 hours of overtime, and 2*$10 for 5 hours of double
time, for a total of 10*40 + (1.5*10)*20 + (2*10)*5 = $800. You may find wages1.py easier to adapt than
wages.py.

A final alternative for if statements: if-elif-.... with no else. This would mean changing the syntax
for if-elif-else above so the final else: and the block after it would be omitted. It is similar to the basic if
statement without an else, in that it is possible for no indented block to be executed. This happens if none
of the conditions in the tests are true.

With an else included, exactly one of the indented blocks is executed. Without an else, at most one
of the indented blocks is executed.

if weight > 120:
print(’Sorry, we can not take a suitcase that heavy.’)

elif weight > 50:
print(’There is a $25 charge for luggage that heavy.’)

This if-elif statement only prints a line if there is a problem with the weight of the suitcase.

3.1.6. Nesting Control-Flow Statements, Part I. The power of a language like Python comes
largely from the variety of ways basic statements can be combined. In particular, for and if statements
can be nested inside each other’s indented blocks. For example, suppose you want to print only the positive
numbers from an arbitrary list of numbers in a function with the following heading. Read the pieces for now.

def printAllPositive(numberList):
’’’Print only the positive numbers in numberList.’’’

For example, suppose numberList is [3, -5, 2, -1, 0, 7]. As a human, who has eyes of amazing capacity,
you are drawn immediately to the actual correct numbers, 3, 2, and 7, but clearly a computer doing this
systematically will have to check every number. That easily suggests a for-each loop starting

for num in numberList:

24 tests to distinguish the 5 cases, as in the previous version

3.1. IF STATEMENTS 98

What happens in the body of the loop is not the same thing each time: some get printed, and for those we
will want the statement

print(num)
but some do not get printed, so it may at first seem that this is not an appropriate situation for a for-each
loop, but in fact, there is a consistent action required: Every number must be tested to see if it should be
printed. This suggests an if statement, with the condition num > 0. Try loading into Idle and running the
example program onlyPositive.py, whose code is shown below. It ends with a line testing the function:

def printAllPositive(numberList):
’’’Print only the positive numbers in numberList.’’’
for num in numberList:

if num > 0:
print(num)

printAllPositive([3, -5, 2, -1, 0, 7])
This idea of nesting if statements enormously expands the possibilities with loops. Now different things
can be done at different times in loops, as long as there is a consistent test to allow a choice between the
alternatives.

The rest of this section deals with graphical examples.
Run example program bounce1.py. It has a red ball moving and bouncing obliquely off the edges. If you

watch several times, you should see that it starts from random locations. Also you can repeat the program
from the Shell prompt after you have run the script. For instance, right after running the program, try in
the Shell

bounceBall(-3, 1)
The parameters give the amount the shape moves in each animation step. You can try other values in the
Shell, preferably with magnitudes less than 10.

For the remainder of the description of this example, read the extracted text pieces.
The animations before this were totally scripted, saying exactly how many moves in which direction, but

in this case the direction of motion changes with every bounce. The program has a graphic object shape
and the central animation step is

shape.move(dx, dy)
but in this case, dx and dy have to change when the ball gets to a boundary. For instance, imagine the ball
getting to the left side as it is moving to the left and up. The bounce obviously alters the horizontal part of
the motion, in fact reversing it, but the ball would still continue up. The reversal of the horizontal part of
the motion means that the horizontal shift changes direction and therefore its sign:

dx = -dx
but dy does not need to change. This switch does not happen at each animation step, but only when the
ball reaches the edge of the window. It happens only some of the time – suggesting an if statement. Still
the condition must be determined. Suppose the center of the ball has coordinates (x, y). When x reaches
some particular x coordinate, call it xLow, the ball should bounce.

The edge of the window is at coordinate 0, but xLow should not be 0, or the ball would be half way off
the screen before bouncing! For the edge of the ball to hit the edge of the screen, the x coordinate of the
center must be the length of the radius away, so actually xLow is the radius of the ball.

Animation goes quickly in small steps, so I cheat. I allow the ball to take one (small, quick) step past
where it really should go (xLow), and then we reverse it so it comes back to where it belongs. In particular

if x < xLow:
dx = -dx

There are similar bounding variables xHigh, yLow and yHigh, all the radius away from the actual edge
coordinates, and similar conditions to test for a bounce off each possible edge. Note that whichever edge is
hit, one coordinate, either dx or dy, reverses. One way the collection of tests could be written is

if x < xLow:
dx = -dx

if x > xHigh

3.1. IF STATEMENTS 99

dx = -dx
if y < yLow:

dy = -dy
if y > yHigh

dy = -dy
This approach would cause there to be some extra testing: If it is true that x < xLow, then it is impossible
for it to be true that x > xHigh, so we do not need both tests together. We avoid unnecessary tests with
an elif clause (for both x and y):

if x < xLow:
dx = -dx

elif x > xHigh
dx = -dx

if y < yLow:
dy = -dy

elif y > yHigh
dy = -dy

Note that the middle if is not changed to an elif, because it is possible for the ball to reach a corner, and
need both dx and dy reversed.

The program also uses several accessor methods for graphics objects that we have not used in examples
yet. Various graphics objects, like the circle we are using as the shape, know their center point, and it can
be accessed with the getCenter() method. (Actually a clone of the point is returned.) Also each coordinate
of a Point can be accessed with the getX() and getY() methods.

This explains the new features in the central function defined for bouncing around in a box, bounceInBox.
The animation arbitrarily goes on in a simple repeat loop for 600 steps. (A later example will improve this
behavior.):

def bounceInBox(shape, dx, dy, xLow, xHigh, yLow, yHigh):
’’’ Animate a shape moving in jumps (dx, dy), bouncing when
its center reaches the low and high x and y coordinates.
’’’

delay = .005
for i in range(600):

shape.move(dx, dy)
center = shape.getCenter()
x = center.getX()
y = center.getY()
if x < xLow:

dx = -dx
elif x > xHigh:

dx = -dx

if y < yLow:
dy = -dy

elif y > yHigh:
dy = -dy

time.sleep(delay)
The program starts the ball from an arbitrary point inside the allowable rectangular bounds. This is
encapsulated in a utility function included in the program, getRandomPoint. The getRandomPoint function
uses the randrange function from the module random. Note that in parameters for both the functions range
and randrange, the end stated is past the last value actually desired:

def getRandomPoint(xLow, xHigh, yLow, yHigh):
’’’Return a random Point with coordinates in the range specified.’’’
x = random.randrange(xLow, xHigh+1)

3.1. IF STATEMENTS 100

y = random.randrange(yLow, yHigh+1)
return Point(x, y)

The full program is listed below, repeating bounceInBox and getRandomPoint for completeness. Several
parts that may be useful later, or are easiest to follow as a unit, are separated out as functions. Make sure
you see how it all hangs together or ask questions!

’’’
Show a ball bouncing off the sides of the window.
’’’
from graphics import *
import time, random

def bounceInBox(shape, dx, dy, xLow, xHigh, yLow, yHigh):
’’’ Animate a shape moving in jumps (dx, dy), bouncing when
its center reaches the low and high x and y coordinates.
’’’

delay = .005
for i in range(600):

shape.move(dx, dy)
center = shape.getCenter()
x = center.getX()
y = center.getY()
if x < xLow:

dx = -dx
elif x > xHigh:

dx = -dx

if y < yLow:
dy = -dy

elif y > yHigh:
dy = -dy

time.sleep(delay)

def getRandomPoint(xLow, xHigh, yLow, yHigh):
’’’Return a random Point with coordinates in the range specified.’’’
x = random.randrange(xLow, xHigh+1)
y = random.randrange(yLow, yHigh+1)
return Point(x, y)

def makeDisk(center, radius, win):
’’’return a red disk that is drawn in win with given center and radius.’’’

disk = Circle(center, radius)
disk.setOutline("red")
disk.setFill("red")
disk.draw(win)
return disk

def bounceBall(dx, dy):
’’’Make a ball bounce around the screen, initially moving by (dx, dy)
at each jump.’’’

winWidth = 290
winHeight = 290

3.1. IF STATEMENTS 101

win = GraphWin(’Ball Bounce’, winWidth, winHeight)
win.setCoords(0, 0, winWidth, winHeight)

radius = 10
xLow = radius # center is separated from the wall by the radius at a bounce
xHigh = winWidth - radius
yLow = radius
yHigh = winHeight - radius

center = getRandomPoint(xLow, xHigh, yLow, yHigh)
ball = makeDisk(center, radius, win)

bounceInBox(ball, dx, dy, xLow, xHigh, yLow, yHigh)
win.close()

bounceBall(3, 5)

3.1.7. Compound Boolean Expressions. To be eligible to graduate from Loyola University Chicago,
you must have 128 units of credit and a GPA of at least 2.0. This translates directly into Python as a
compound condition:

units >= 128 and GPA >=2.0

This is true if both units >= 128 is true and GPA >=2.0 is true. A short example program using this would
be:

units = input(’How many units of credit do you have? ’)
GPA = input(’What is your GPA? ’)
if units >= 128 and GPA >=2.0:

print(’You are eligible to graduate!’)
else:

print(’You are not eligible to graduate.’)
The new Python syntax is for the operator and:

condition1 and condition2
It is true if both of the conditions are true. It is false if at least one of the conditions is false.

Exercise 3.1.7.1. A person is eligible to be a US Senator who is at least 30 years old and has been
a US citizen for at least 9 years. Write a version of a program congress.py to obtain age and length of
citizenship from the user and print out if a person is eligible to be a Senator or not. A person is eligible to
be a US Representative who is at least 25 years old and has been a US citizen for at least 7 years. Elaborate
your program congress.py so it obtains age and length of citizenship and prints whether a person is eligible
to be a US Representative only, or is eligible for both offices, or is eligible for neither.

In the last example in the previous section, there was an if-elif statement where both tests had the same
block to be done if the condition was true:

if x < xLow:
dx = -dx

elif x > xHigh:
dx = -dx

There is a simpler way to state this in a sentence: If x < xLow or x > xHigh, switch the sign of dx. That
translates directly into Python:

if x < xLow or x > xHigh:
dx = -dx

The word or makes another compound condition:
condition1 or condition2

3.1. IF STATEMENTS 102

is true if at least one of the conditions is true. It is false if both conditions are false. This corresponds to one
way the word “or” is used in English. Other times in English “or” is used to mean exactly one alternative is
true.

It is often convenient to encapsulate complicated tests inside a function. Think how to complete the
function starting:

def isInside(rect, point):
’’’Return True if the point is inside the Rectangle rect.’’’

pt1 = rect.getP1()
pt2 = rect.getP2()

Recall that a Rectangle is specified in its constructor by two diagonally oppose Points. This example gives
the first use in the tutorials of the Rectangle methods that recover those two corner points, getP1 and
getP2. The program calls the points obtained this way p1 and p2. The x and y coordinates of pt1, pt2,
and point can be recovered with the methods of the Point type, getX() and getY().

Suppose that I introduce variables for the x coordinates of p1, point, and p2, calling these x-coordinates
end1, val, and end2, respectively. On first try you might decide that the needed mathematical relationship
to test is

end1 <= val <= end2
Unfortunately, this is not enough: The only requirement for the two corner points is that they be diagonally
opposite, not that the coordinates of the second point are higher than the corresponding coordinates of the
first point. It could be that end1 is 200; end2 is 100, and val is 120. In this latter case val is between end1
and end2, but substituting into the expression above

200 <= 120 <= 100
is False. The 100 and 200 need to be reversed in this case. This makes a complicated situation, and an issue
which must be revisited for both the x and y coordinates. I introduce an auxiliary function isBetween to
deal with one coordinate at a time. It starts:

def isBetween(val, end1, end2):
’’’Return True if val is between the ends.
The ends do not need to be in increasing order.’’’

Clearly this is true if the original expression, end1 <= val <= end2, is true. You must also consider the
possible case when the order of the ends is reversed: end2 <= val <= end1. How do we combine these two
possibilities? The Boolean connectives to consider are and and or. Which applies? You only need one to be
true, so or is the proper connective:

A correct but redundant function body would be:
if end1 <= val <= end2 or end2 <= val <= end1:

return True
else:

return False
Check the meaning: if the compound expression is True, return True. If the condition is False, return False
– in either case return the same value as the test condition. See that a much simpler and neater version is
to just return the value of the condition itself!

return end1 <= val <= end2 or end2 <= val <= end1
In general you should not need an if-else statement to choose between true and false values!

A side comment on expressions like
end1 <= val <= end2

Other than the two-character operators, this is like standard math syntax, chaining comparisons. In Python
any number of comparisons can be chained in this way, closely approximating mathematical notation.
Though this is good Python, be aware that if you try other high-level languages like Java and C++, such
an expression is gibberish. Another way the expression can be expressed (and which translates directly to
other languages) is:

end1 <= val and val <= end2

3.1. IF STATEMENTS 103

So much for the auxiliary function isBetween. Back to the isInside function. You can use the isBetween
function to check the x coordinates, isBetween(point.getX(), p1.getX(), p2.getX()), and to check the
y coordinates, isBetween(point.getY(), p1.getY(), p2.getY()). Again the question arises: how do
you combine the two tests?

In this case we need the point to be both between the sides and between the top and bottom, so the
proper connector is and.

Think how to finish the isInside method. Hint: 3

Sometimes you want to test the opposite of a condition. As in English you can use the word not. For
instance, to test if a Point was not inside Rectangle Rect, you could use the condition

not isInside(rect, point)
In general,

not condition
is True when condition is False, and False when condition is True.

The example program chooseButton1.py, shown below, is a complete program using the isInside func-
tion in a simple application, choosing colors. Pardon the length. Do check it out. It will be the starting
point for a number of improvements that shorten it and make it more powerful in the next section. First a
brief overview:

The program includes the functions isBetween and isInside that have already been discussed. The
program creates a number of colored rectangles to use as buttons and also as picture components. Aside
from specific data values, the code to create each rectangle is the same, so the action is encapsulated in a
function, makeColoredRect. All of this is fine, and will be preserved in later versions.

The present main function is long, though. It has the usual graphics starting code, draws buttons and
picture elements, and then has a number of code sections prompting the user to choose a color for a picture
element. Each code section has a long if-elif-else test to see which button was clicked, and sets the color of
the picture element appropriately.

’’’Make a choice of colors via mouse clicks in Rectangles --
A demonstration of Boolean operators and Boolean functions.’’’

from graphics import *

def isBetween(x, end1, end2): #same as before
’’’Return True if x is between the ends or equal to either.
The ends do not need to be in increasing order.’’’

return end1 <= x <= end2 or end2 <= x <= end1

def isInside(point, rect):
’’’Return True if the point is inside the Rectangle rect.’’’

pt1 = rect.getP1()
pt2 = rect.getP2()
return isBetween(point.getX(), pt1.getX(), pt2.getX()) and \

isBetween(point.getY(), pt1.getY(), pt2.getY())

def makeColoredRect(corner, width, height, color, win):
’’’ Return a Rectangle drawn in win with the upper left corner
and color specified.’’’

corner2 = corner.clone()
corner2.move(width, -height)
rect = Rectangle(corner, corner2)
rect.setFill(color)

3Once again, you are calculating and returning a Boolean result. You do not need an if-else statement.

3.1. IF STATEMENTS 104

rect.draw(win)
return rect

def main():
winWidth = 400
winHeight = 400
win = GraphWin(’pick Colors’, winWidth, winHeight)
win.setCoords(0, 0, winWidth, winHeight)

redButton = makeColoredRect(Point(310, 350), 80, 30, ’red’, win)
yellowButton = makeColoredRect(Point(310, 310), 80, 30, ’yellow’, win)
blueButton = makeColoredRect(Point(310, 270), 80, 30, ’blue’, win)

house = makeColoredRect(Point(60, 200), 180, 150, ’gray’, win)
door = makeColoredRect(Point(90, 150), 40, 100, ’white’, win)
roof = Polygon(Point(50, 200), Point(250, 200), Point(150, 300))
roof.setFill(’black’)
roof.draw(win)

msg = Text(Point(winWidth/2, 375),’Click to choose a house color.’)
msg.draw(win)
pt = win.getMouse()
if isInside(pt, redButton):

color = ’red’
elif isInside(pt, yellowButton):

color = ’yellow’
elif isInside(pt, blueButton):

color = ’blue’
else :

color = ’white’
house.setFill(color)

msg.setText(’Click to choose a door color.’)
pt = win.getMouse()
if isInside(pt, redButton):

color = ’red’
elif isInside(pt, yellowButton):

color = ’yellow’
elif isInside(pt, blueButton):

color = ’blue’
else :

color = ’white’
door.setFill(color)

msg.setText(’Click anywhere to quit.’)
win.getMouse()
win.close()

main()

The only further new feature used is in the long return statement in isInside.

return isBetween(point.getX(), pt1.getX(), pt2.getX()) and \
isBetween(point.getY(), pt1.getY(), pt2.getY())

3.2. LOOPS AND TUPLES 105

Recall that Python is smart enough to realize that a statement continues to the next line if there is an
unmatched pair of parentheses or brackets. Above is another situation with a long statement, but there are
no unmatched parentheses on a line. For readability it is best not to make an enormous long line that would
run off your screen or paper. Continuing to the next line is recommended. You can make the final character
on a line be a backslash (\) to indicate the statement continues on the next line. This is not particularly
neat, but it is a rather rare situation. Most statements fit neatly on one line, and the creator of Python
decided it was best to make the syntax simple in the most common situation. (Many other languages require
a special statement terminator symbol like ’;’ and pay no attention to newlines).

The chooseButton1.py program is long partly because of repeated code. The next section gives another
version involving lists.

3.2. Loops and Tuples

This section will discuss several improvements to the chooseButton1.py program from the last section
that will turn it into example program chooseButton2.py.

First an introduction to tuples, which we will use for the first time in this section:
A tuple is similar to a list except that a literal tuple is enclosed in parentheses rather than square

brackets and a tuple is immutable. In particular you cannot change the length or substitute elements, unlike
a list. Examples are

(1, 2, 3)
(’yes’, ’no’)

They are another way to make several items into a single object. You can refer to individual parts with
indexing, like with lists, but a more common way is with multiple assignment. A silly simple example:

tup = (1, 2)
(x, y) = tup
print(x) # printe 1
print(y) # prints 2

Now back to improving the chooseButton1.py program, which has similar code repeating in several places.
Imagine how much worse it would be if there were more colors to choose from and more parts to color!

First consider the most egregious example:
if isInside(pt, redButton):

color = ’red’
elif isInside(pt, yellowButton):

color = ’yellow’
elif isInside(pt, blueButton):

color = ’blue’
else :

color = ’white’
Not only is this exact if statement repeated several times, all the conditions within the if statement are
very similar! Part of the reason I did not put this all in a function was the large number of separate variables.
On further inspection, the particular variables redButton, yellowButton, blueButton, all play a similar
role, and their names are not really important, it is their associations that are important: that redButton
goes with ’red’, When there is a sequence of things all treated similarly, it suggests a list and a loop. An
issue here is that the changing data is paired, a rectangle with a color string. There are a number of ways to
handle such associations. A very neat way in Python to package a pair (or more things together) is a tuple,
turning several things into one object, as in (redButtton, ’red’). Objects such are this tuple can be put in a
larger list:

choicePairs = [(redButtton, ’red’), (yellowButton, ’yellow’), (blueButton, ’blue’)]
Such tuples may be neatly handled in a for statement. You can imagine a function to encapsulate the color
choice starting:

def getChoice(choicePairs, default, win):
’’’Given a list choicePairs of tuples, with each tuple in the form

3.2. LOOPS AND TUPLES 106

(rectangle, choice), return the choice that goes with the rectangle
in win where the mouse gets clicked, or return default if the click
is in none of the rectangles.’’’

point = win.getMouse()
for (rectangle, choice) in choicePairs:

#....
This is the first time we have had a for-loop going through a list of tuples. Recall that we can do multiple
assignments at once with tuples. This also works in a for-loop heading. The for-loop goes through one
tuple in the list choicePairs at a time. The first time through the loop the tuple taken from the list
is (redButtton, ’red’). This for-loop does a multiple assignment to (rectangle, choice)each time
through the loop, so the first time rectangle refers to redButton and choice refers to ’red’. The next
time through the loop, the second tuple from the list is used, (yellowButton, ’yellow’)so this time inside
the loop rectangle will refer to yellowButton and choice refers to ’yellow’....This is a neat Python
feature.4

There is still a problem. We could test each rectangle in the for-each loop, but the original if-elif...
statement in chooseButton1.py stops when the first condition is true. For-each statements are designed to go
all the way through the sequence. There is a simple way out of this in a function: A return statement always
stops the execution of a function. When we have found the rectangle containing the point, the function can
return the desired choice immediately!

def getChoice(choicePairs, default, win):
’’’Given a list of tuples (rectangle, choice), return the choice
that goes with the rectangle in win where the mouse gets clicked,
or return default if the click is in none of the rectangles.’’’

point = win.getMouse()
for (rectangle, choice) in choicePairs:

if isInside(point, rectangle):
return choice

return default
Note that the else part in chooseButton1.py corresponds to the statement after the loop above. If execution
gets past the loop, then none of the conditions tested in the loop was true.

With appropriate parameters, the looping function is a complete replacement for the original if-elif
statement! The replacement has further advantages.

• There can be an arbitrarily long list of pairs, and the exact same code works.
• This code is clearer and easier to read, since there is no need to read through a long sequence of
similar if-elif clauses.

• The names of the rectangles in the tuples in the list are never referred to. They are unnecessary
here. Only a list needs to be specified. That could be useful earlier in the program

Are individual names for the rectangles needed earlier? No, the program only need to end up with the pairs
of the form (rectangle, color) in a list. The statements in the original program, below, have a similar form
which will allow them to be rewritten:

redButton = makeColoredRect(Point(310, 350), 80, 30, ’red’, win)
yellowButton = makeColoredRect(Point(310, 310), 80, 30, ’yellow’, win)
blueButton = makeColoredRect(Point(310, 270), 80, 30, ’blue’, win)

As stated earlier, we could use the statements above and then make a list of pairs with the statement

choicePairs = [(redButtton, ’red’), (yellowButton, ’yellow’), (blueButton, ’blue’)]

4Particularly in other object-oriented languages where lists and tuples are way less easy to use, the preferred way to group
associated objects, like rectangle and choice, is to make a custom object type containing them all. This is also possible and
often useful in Python. In some relatively simple cases, like in the current example, use of tuples can be easier to follow, though
the approach taken is a matter of taste. The topic of creating custom type of objects will not be taken up in these tutorials.

3.2. LOOPS AND TUPLES 107

Now I will look at an alternative that would be particularly useful if there were considerably more buttons
and colors.

All the assignment statements with makeColorRect have the same format, but differing data for several
parameters. I use that fact in the alternate code:

choicePairs = list()
buttonSetup = [(310, 350, ’red’), (310, 310, ’yellow’), (310, 270, ’blue’)]
for (x, y, color) in buttonSetup:

button = makeColoredRect(Point(x, y), 80, 30, color, win)
choicePairs.append((button, color))

I extract the changing data from the creation of the rectangles into a list, buttonSetup. Since more than one
data items are different for each of the original lines, the list contains a tuple of data from each of the original
lines. Then I loop through this list and not only create the rectangles for each color, but also accumulates
the (rectangle, color) pairs for the list choicePairs.

Note the double parentheses in the last line of the code. The outer ones are for the method call. The
inner ones create a single tuple as the parameter.

Assuming I do not need the original individual names of the Rectangles, this code with the loop will
completely substitute for the previous code with its separate lines with the separate named variables and
the recurring formats.

This code has advantages similar to those listed above for the getChoice code.
Now look at what this new code means for the interactive part of the program. The interactive code

directly reduces to
msg = Text(Point(winWidth/2, 375),’Click to choose a house color.’)
msg.draw(win)
color = getChoice(colorPairs, ’white’, win)
house.setFill(color)

msg.setText(’Click to choose a door color.’)
color = getChoice(colorPairs, ’white’, win)
door.setFill(color)

In the original version with the long if-elif statements, the interactive portion only included portions for
the user to set the color of two shapes in the picture (or you would have been reading code forever). Looking
now at the similarity of the code for the two parts, we can imagine another loop, that would easily allow for
many more parts to be colored interactively.

There are still several differences to resolve. First the message msg is created the first time, and only
the text is set the next time. That is easy to make consistent by splitting the first part into an initialization
and a separate call to setText like in the second part:

msg = Text(Point(winWidth/2, 375),’’)
msg.draw(win)

msg.setText(’Click to choose a house color.’)

Then look to see the differences between the code for the two choices. The shape object to be colored and
the name used to describe the shape change: two changes in each part. Again tuples can store the changes
of the form (shape, description). This is another place appropriate for a loop driven by tuples.. The (shape,
description) tuples should be explicitly written into a list that can be called shapePairs. We could easily
extend the list shapePairs to allow more graphics objects to be colored. In the code below, the roof is added.

The new interactive code can start with:
shapePairs = [(house, ’house’), (door, ’door’), (roof, ’roof’)]
msg = Text(Point(winWidth/2, 375),’’)
msg.draw(win)
for (shape, description) in shapePairs:

prompt = ’Click to choose a + description + ’ color.’
....

3.2. LOOPS AND TUPLES 108

Can you finish the body of the loop? Look at the original version of the interactive code. When you are
done thinking about it, go on to my solution. The entire code is in example program chooseButton2.py,
and also below. The changes from chooseButton1.py are in three blocks, each labeled #NEW in the code.
The new parts are the getChoice function and the two new sections of main with the loops:

’’’Make a choice of colors via mouse clicks in Rectangles --
Demonstrate loops using lists of tuples of data.’’’

from graphics import *

def isBetween(x, end1, end2):
’’’Return True if x is between the ends or equal to either.
The ends do not need to be in increasing order.’’’

return end1 <= x <= end2 or end2 <= x <= end1

def isInside(point, rect):
’’’Return True if the point is inside the Rectangle rect.’’’

pt1 = rect.getP1()
pt2 = rect.getP2()
return isBetween(point.getX(), pt1.getX(), pt2.getX()) and \

isBetween(point.getY(), pt1.getY(), pt2.getY())

def makeColoredRect(corner, width, height, color, win):
’’’ Return a Rectangle drawn in win with the upper left corner
and color specified.’’’

corner2 = corner.clone()
corner2.move(width, -height)
rect = Rectangle(corner, corner2)
rect.setFill(color)
rect.draw(win)
return rect

def getChoice(choicePairs, default, win): #NEW, discussed above
’’’Given a list of tuples (rectangle, choice), return the choice
that goes with the rectangle in win where the mouse gets clicked,
or return default if the click is in none of the rectangles.’’’

point = win.getMouse()
for (rectangle, choice) in choicePairs:

if isInside(point, rectangle):
return choice

return default

def main():
winWidth = 400
winHeight = 400
win = GraphWin(’Pick Colors’, winWidth, winHeight)
win.setCoords(0, 0, winWidth, winHeight)

#NEW, shown in the discussion above
choicePairs = list() # elements (button rectangle, color)
buttonSetup = [(310, 350, ’red’), (310, 310, ’yellow’), (310, 270, ’blue’)]

3.3. WHILE STATEMENTS 109

for (x, y, color) in buttonSetup:
button = makeColoredRect(Point(x, y), 80, 30, color, win)
choicePairs.append((button, color))

house = makeColoredRect(Point(60, 200), 180, 150, ’gray’, win)
door = makeColoredRect(Point(90, 150), 40, 100, ’white’, win)
roof = Polygon(Point(50, 200), Point(250, 200), Point(150, 300))
roof.setFill(’black’)
roof.draw(win)

#NEW started in the discussion above.
shapePairs = [(house, ’house’), (door, ’door’), (roof, ’roof’)]
msg = Text(Point(winWidth/2, 375),’’)
msg.draw(win)
for (shape, description) in shapePairs:

prompt = ’Click to choose a + description + ’ color.’
msg.setText(prompt)
color = getChoice(choicePairs, ’white’, win)
shape.setFill(color)

msg.setText(’Click anywhere to quit.’)
win.getMouse()
win.close()

main()
Run it.

With the limited number of choices in chooseButton1.py, the change in length to convert to chooseBut-
ton2.py is not significant, but the change in organization is significant if you try to extend the program, as
in the exercise below. See if you agree!

Exercise 3.2.0.2. a. Write a program chooseButton3.py, modifying chooseButton2.py. Look at the
format of the list buttonSetup, and extend it so there is a larger choice of buttons and colors. Add at least
one button and color.

b. Further extend the program chooseButton3.py by adding some further graphical object shape to
the picture, and extend the list shapePairs, so they can all be interactively colored.

c. (Optional) If you would like to carry this further, also add a prompt to change the outline color of
each shape, and then carry out the changes the user desires.

d. (Optional Challenge) Look at the pattern within the list buttonSetup. It has a consistent x coordi-
nate, and there is a regular pattern to the change in the y coordinate (a consistent decrease each time). The
only data that is arbitrary each time is the sequence of colors. Write a further version chooseButton4.py
with a function makeButtonSetup, that takes a list of color names as a parameter and uses a loop to create
the list used as buttonSetup. End by returning this list. Use the function to initialize buttonSetup. If you
like, make the function more general and include parameters for the x coordinate, the starting y coordinate
and the regular y coordinate change.

3.3. While Statements

3.3.1. Simple while Loops. Other than the trick with using a return statement inside of a for loop,
all of the loops so far have gone all the way through a specified list. In any case the for loop has required the
use of a specific list. This is often too restrictive. A Python while loop behaves quite similarly to common
English usage. If I say

While your tea is too hot, add a chip of ice.
Presumably you would test your tea. If it were too hot, you would add a little ice. If you test again and it
is still too hot, you would add ice again. As long as you tested and found it was true that your tea was too
hot, you would go back and add more ice. Python has a similar syntax:

3.3. WHILE STATEMENTS 110

while condition :
indentedBlock

Setting up the English example in a similar format would be:
while your tea is too hot :

add a chip of ice

To make things concrete and numerical, suppose the following: The tea starts at 115 degrees Fahrenheit.
You want it at 112 degrees. A chip of ice turns out to lower the temperature one degree each time. You test
the temperature each time, and also print out the temperature before reducing the temperature. In Python
you could write and run the code below, saved in example program cool.py:

temperature = 115 #1
while temperature > 112: #2

print(temperature) #3
temperature = temperature - 1 #4

print(’The tea is cool enough.’) #5

I added a final line after the while loop to remind you that execution follows sequentially after a loop
completes.

If you play computer and follow the path of execution, you could generate the following table. Remem-
ber, that each time you reach the end of the indented block after the while heading, execution returns to
the while heading:

line temperature comment
1 115
2 115 > 112 is true, do loop
3 prints 115
4 114 115 - 1 is 114, loop back
2 114 > 112 is true, do loop
3 prints 114
4 113 114 - 1 is 113, loop back
2 113 > 112 is true, do loop
3 prints 113
4 112 113 - 1 is 112, loop back
2 112 > 112 is false, skip loop
5 prints that the tea is cool

Each time the end of the indented loop body is reached, execution returns to the while loop heading
for another test. When the test is finally false, execution jumps past the indented body of the while loop
to the next sequential statement.

A while loop generally follows the pattern of the successive modification loop introduced with for-each
loops:

initialization
while continuationCondition:

do main action to be repeated
prepare variables for the next time through the loop

Test yourself: Figure out by following the code, what is printed?
i = 4
while (i < 9):

print(i)
i = i+2

Check yourself by running the example program testWhile.py.
In Python, while is not used quite like in English. In English you could mean to stop as soon as the

condition you want to test becomes false. In Python the test is only made when execution for the loop starts,

3.3. WHILE STATEMENTS 111

not in the middle of the loop. Predict what will happen with this slight variation on the previous example,
switching the order in the loop body. Follow it carefully, one step at a time.

i = 4 #1
while (i < 9): #2

i = i+2 #3
print(i) #4

Check yourself by running the example program testWhile2.py.
The sequence order is important. The variable i is increased before it is printed, so the first number

printed is 6. Another common error is to assume that 10 will not be printed, since 10 is past 9, but the
test that may stop the loop is not made in the middle of the loop. Once the body of the loop is started, it
continues to the end, even when i becomes 10.

line i comment
1 4
2 4 < 9 is true, do loop
3 6 4+2=6
4 print 6
2 6 < 9 is true, do loop
3 8 6+2= 8
4 print 8
2 8 < 9 is true, do loop
3 10 8+2=10
4 112 print 10
2 10 < 9 is false, skip loop

Predict what happens in this related little program:
nums = list()
i = 4
while (i < 9):

nums.append(i)
i = i+2

print(nums)

Check yourself by running the example program testWhile3.py.

3.3.2. The range Function, In General. There is actually a much simpler way to generate the
previous sequence, using a further variation of the range function. Enter these lines separately in the Shell.
As in the simpler applications of range, the values are only generated one at a time, as needed. To see the
entire sequence at once, convert the sequence to a list:

nums = list(range(4, 9, 2))
print(nums)

The third parameter is needed when the step size from one element to the next is not 1.
The most general syntax is

range(start, pastEnd, step)

The value of the second parameter is always past the final element of the list. Each element after the first
in the list is step more than the previous one. Predict and try in the Shell:

list(range(4, 10, 2))

Actually the range function is even more sophisticated than indicated by the while loop above. The step
size can be negative.

Try in the Shell:
list(range(10, 0, -1))

Do you see how 0 is past the end of the list?

3.3. WHILE STATEMENTS 112

Make up a range function call to generate the list of temperatures printed in the tea example, 115,
114, 113. Test it in the Shell.

3.3.3. Interactive while Loops. The earlier examples of while loops were chosen for their simplicity.
Obviously they could have been rewritten with range function calls. Now lets try a more interesting example.
Suppose you want to let a user enter a sequence of lines of text, and want to remember each line in a list.
This could easily be done with a simple repeat loop if you knew the number of lines to enter. For example
if you want three lines:

lines = list()
print(’Enter 3 lines of text’)
for i in range(3):

line = input(’Next line: ’)
lines.append(line)

print(’Your lines were:’) # check now
for line in lines:

print(line)
The user may want to enter a bunch of lines and not count them all ahead of time. This means the number of
repetitions would not be known ahead of time. A while loop is appropriate here. There is still the question
of how to test whether the user wants to continue. An obvious but verbose way to do this is to ask before
every line if the user wants to continue, as shown below and in the example file readLines1.py. Read it
and then run it:

lines = list()
testAnswer = input(’Press y if you want to enter more lines: ’)
while testAnswer == ’y’:

line = input(’Next line: ’)
lines.append(line)
testAnswer = input(’Press y if you want to enter more lines: ’)

print(’Your lines were:’)
for line in lines:

print(line)
The data must be initialized before the loop, in order for the first test of the while condition to work. Also
the test must work when you loop back from the end of the loop body. This means the data for the test
must also be set up a second time, in the loop body.

The readLines1.py code works, but it may be more annoying than counting ahead! Two lines must be
entered for every one you actually want! A practical alternative is to use a sentinel: a piece of data that
would not make sense in the regular sequence, and which is used to indicate the end of the input. You could
agree to use the line DONE! Even simpler: if you assume all the real lines of data will actually have some
text on them, use an empty line as a sentinel. (If you think about it, the Python Shell uses this approach
when you enter a statement with an indented body.) This way you only need to enter one extra (very simple)
line, no matter how many lines of real data you have.

What should the while condition be now? Since the sentinel is an empty line, you might think line ==
’’, but that is the termination condition, not the continuation condition: You need the opposite condition.
To negate a condition in Python, you may use not, like in English,

not line == ’’
. Of course in this situation there is a shorter way, line != ’’. Run the example program readLines2.py,
shown below:

lines = list()
print(’Enter lines of text.’)
print(’Enter an empty line to quit.’)
line = input(’Next line: ’)
while line != ’’:

3.3. WHILE STATEMENTS 113

lines.append(line)
line = input(’Next line: ’)

print(’Your lines were:’)
for line in lines:

print(line)
Again the data for the test in the while loop heading must be initialized before the first time the while
statement is executed and the test data must also be made ready inside the loop for the test after the body
has executed. Hence you see the statements setting the variable line both before the loop and at the end
of the loop body. It is easy to forget the second place inside the loop!

Comment the last line of the loop out, and run it again after reading the rest of this paragraph. It
will never stop! The variable line will forever have the initial value you gave it! You actually can stop the
program by entering Ctrl-C. That means hold the Ctrl key and press C.

As you finish coding a while loop, it is good practice to always double-check: Did I make a change to
the variables, inside the loop, that will eventually make the loop condition false?

Exercise 3.3.3.1. a. Write a program sumAll.py that prompts the user to enter numbers, one per line,
ending with a line containing 0, and keep a running sum of the numbers. At the end (only) print out the
sum. You should not need to create a list! You can immediately increase the sum with each number entered.

3.3.4. Graphical Applications. Another place where a while loop could be useful is in interactive
graphics. Suppose you want the user to be able to create a Polygon by clicking on vertices they choose
interactively, but you do not want them to have to count the number of vertices ahead of time. A while loop
is suggested for such a repetitive process. As with entering lines of text interactively, there is the question of
how to indicate you are done (or how to indicate to continue). If you make only a certain region be allowed
for the Polygon, then the sentinel can be a mouse click outside the region. The earlier interactive color choice
example already has a method to check if a mouse click is inside a Rectangle, so that method can be copied
and reused.

Creating a polygon is a unified activity with a defined product, so let’s define a function. It involves a
boundary rectangle and mouse clicks in a GraphWin, and may as well return the Polygon constructed. Read
the following start:

def polyHere(rect, win):
’’’ Draw a polygon interactively in Rectangle rect, in GraphWin win.
Collect mouse clicks inside rect into a Polygon.
When a click goes outside rect, stop and return the final polygon.
The polygon ends up drawn. The method draws and undraws rect.’’’

....
It is useful to start by thinking of the objects needed, and give them names.

• A Polygon is needed. Call it poly.
• A list of vertices is needed. Call it vertices. I need to append to this list. It must be initialized
first.

• The latest mouse click point is needed. Call it pt.
Certainly the overall process will be repetitious, choosing point after point. Still it may not be at all clear
how to make an effective Python loop. In challenging situations like this it is often useful to imagine a
concrete situation with a limited number of steps, so each step can be written in sequence without worrying
about a loop.

For instance to get up to a triangle (3 vertices in our list and a fourth mouse click for the sentinel),
you might imagine the following sequence, undrawing each old polygon before the next is displayed with the
latest mouse click included:

rect.setOutline("red")
rect.draw(win)
vertices = list()
pt = win.getMouse()

3.3. WHILE STATEMENTS 114

vertices.append(pt)
poly = Polygon(vertices)
poly.draw(win) # with one point
pt = win.getMouse()
poly.undraw()
vertices.append(pt)
poly = Polygon(vertices)
poly.draw(win) # with two points
pt = win.getMouse()
poly.undraw()
vertices.append(pt)
poly = Polygon(vertices)
poly.draw(win) # with three points
pt = win.getMouse() # assume outside the region

rect.undraw()
return poly

There is a fine point here that I missed the first time. The vertices of a Polygon do not get mutated in this
system. A new Polygon gets created each time with the new vertex list. The old Polygon does not go away
automatically, and extraneous lines appear in the picture if the old polygon is not explicitly undrawn each
time before a new version is redrawn with an extra vertex. The timing for the undraw needs to be after the
next mouse click and presumably before the next Polygon is created, so it could be before or after the line
vertices.append(pt). I arbitrarily chose for it to go before the vertices list is changed . The rest of the
order of the lines is pretty well fixed by the basic logic.

If you think of the repetitions through a large number of loops, the process is essentially circular (as
suggested by the word ’loop’). The body of a loop in Python, however, is written as a linear sequence: one
with a first line and a last line, a beginning and an end. We can cut a circle anywhere to get a piece with
a beginning and an end. In practice, the place you cut the loop for Python has one main constraint. The
continuation condition in the while heading must make sense there. The processing in Python from the end
of one time through the loop to the beginning of the next loop is separated by the test of the condition in
the heading.

It can help to look at a concrete example sequence like the steps listed above for creating a triangle. The
continuation condition is for pt to be in the rectangle, so using the previously written function isInside,
the loop heading will be

while isInside(pt, rect):

With this condition in mind, look for where to split to loop. It needs to be after a new pt is clicked (so it can
be tested) and before the next Polygon is created (so it does not include the sentinel point by mistake). In
particular, with the sequence above, look and see that the split could go before or after the poly.undraw()
line. Exercise 3.3.4.1 below considers the case where the split goes before this line. I will proceed with the
choice of splitting into a Python loop after the undraw line. This makes the loop be

while isInside(pt, rect):
vertices.append(pt)
poly = Polygon(vertices)
poly.draw(win)
pt = win.getMouse()
poly.undraw()

If you follow the total sequence of required steps above for making the concrete triangle, you see that this
full sequence for the loop is only repeated twice. The last time there is no poly.undraw() step. I could redo
the loop moving the undraw line to the top, which caused different issues (Exercise 3.3.4.1 below). Instead
think how to make it work at the end of the final time through the loop.

There are several possible approaches. You want the undraw line every time except for the last time.
Hence it is a statement you want sometimes and not others. That suggests an if statement. The times you
want the undraw are when the loop will repeat again. This is the same as the continuation condition for the

3.3. WHILE STATEMENTS 115

loop, and you have just read the next value for pt! You could just add a condition in front of the last line
of the loop:

if isInside(pt, rect):
poly.undraw()

I find this option unaesthetic: it means duplicating the continuation test twice in every loop.
Instead of avoiding the undraw as you exit the loop, another option in this case is to undo it: just redraw

the polygon one final time beyond the loop. This only needs to be done once, not repeatedly in the loop.
Then the repetitious lines collapse neatly into the loop, leaving a few of lines of the overall sequence before
and after the loop. In the end the entire function is:

def polyHere(rect, win):
’’’ Draw a polygon interactively in Rectangle rect, in GraphWin win.
Collect mouse clicks inside rect into a Polygon.
When a click goes outside rect, stop and return the final polygon.
The polygon ends up drawn. The method draws and undraws rect.’’’

rect.setOutline("red")
rect.draw(win)
vertices = list()
pt = win.getMouse()
while isInside(pt, rect):

vertices.append(pt)
poly = Polygon(vertices)
poly.draw(win)
pt = win.getMouse()
poly.undraw()

poly.draw(win) # undo the last poly.undraw()
rect.undraw()
return poly

Follow this code through, imagining three mouse clicks inside rect and then one click outside of rect. Compare
the steps to the ones in the concrete sequence written out above and see that the match (aside from the last
cancelling undraw and draw of poly).

This function is illustrated in a the example program makePoly.py. Other than standard graphics
example code, the main program contains:

rect1 = Rectangle(Point(5, 55), Point(200, 120))
poly1 = polyHere(rect1, win)
poly1.setFill(’green’)

rect2 = Rectangle(Point(210, 50), Point(350, 350))
poly2 = polyHere(rect2, win)
poly2.setOutline(’orange’)

As you can see, the returned polygons are used to make color changes, just as an illustration.

Exercise 3.3.4.1. ** As discussed above, the basic loop logic works whether the poly.undraw() call is
at the beginning or end of the loop. Write a variation makePoly2.py that makes the code work the other
way, with the poly.undraw() at the beginning of the loop. The new place to cut the loop does affect the
code before and after the loop. In particular, the extra statement drawing poly is not needed after the loop
is completed. Make other changes to the surrounding code to make this work. Hints: 5

5The basic issue is similar to the old version: the undraw is not always needed at the beginning, either. In this place it is
not need the first time through the loop. The two basic approaches considered for the previous version still work here: break
into cases inside the loop or make an extra compensating action outside the loop. Further hint: It is legal to draw a polygon
with an empty vertex list – nothing appears on the screen.

3.3. WHILE STATEMENTS 116

Exercise 3.3.4.2. Write a program very similar to makePoly.py, and call it makePath.py, with a
function pathHere. The only outward difference between polyHere and pathHere is that while the first
creates a closed polygon, and returns it, and the new one creates a polygonal path, without the final point
being automatically connected to the first point, and a list of the lines in the path is returned. Internally
the functions are quite different. The change simplifies some things: no need to undraw anything in the
main loop - just draw the latest segment each time going from the previous point to the just clicked point.
There is a complication however, you do need deal specially with the first point. It has no previous point to
connect to. I suggest you handle this before the main loop, and draw the point so it is a visible guide for
the next point. After your main loop is finished undraw this initial point. (The place on the screen will still
be visible if an initial segment is drawn. If no more points were added, the screen is left blank, which is the
way it should be.) You also need to remember the previous point each time through the main loop.

In your main program, test the makePath function several times. Use the list of lines returned to loop
and change the color in one path and the width of the lines in another path. A portion of a sample image
is shown below after all this is done.

In earlier animation examples a while loop would also have been useful. Rather than continuing the
animation a fixed number of times, it would be nice for the user to indicate by a mouse click when she has
watched long enough. Thus far the only way to use the mouse has been with getMouse(). This is not going
to work in an animation, because the computer stops and waits for a click with getMouse(), whereas the
animation should continue until the click.

In full-fledged graphical systems that respond to events, this is no problem. Zelle’s graphics is built
on top of a capable event-driven system, and in fact, all mouse clicks are registered, even outside calls to
getMouse(), though Zelle’s documentation pages do not mention it.

As an example, run example program randomCirclesWhile.py. Be sure to follow the prompt saying to
click to start and to end.

Aside from the prompts, the difference from the previous randomCircles.py program is the replacement
of the original simple repeat loop heading

for i in range(75):
code for an animation step

by the following initialization and while loop heading:
while win.checkMouse() == None: #NEW

3.3. WHILE STATEMENTS 117

code for an animation step
The graphics module remembers the last mouse click, whether or not it occurred during a call to getMouse().
An alternative way to check is checkMouse(). It does not wait for the mouse as in getMouse(). Instead
it returns the remembered mouse click – the most recent mouse click in the past, unless there has been no
mouse click since the last call to getMouse or checkMouse. In that case checkMouse() returns None (the
special object used to indicate the lack of a regular object).

The checkMouse method allows for a loop that does not stop while waiting for a mouse click, but goes
on until the heading test detects that the mouse was clicked.

A similar elaboration can be made for the other examples of animation, like bounce1.py. In bounceWhile.py
I modified bounce1.py to have a while loop in place of the for-loop repeating 600 times. Run it. The only
slight added modification here was that win was not originally a parameter to bounceInBox, so I included
it. Look at the source code for bounceWhile.py, with the few changes marked NEW.

In bounce2.py I also made a more interesting change to the initialization, so the initial direction and
speed of the mouse are determined graphically by the user, with a mouse click. Try example program
bounce2.py.

The program includes a new utility function to help determine the initial (dx, dy) for the animation.
This is done by calculating the move necessary to go from one point (where the ball is in this program) to
another (specified by a user’s mouse click in this program).

def getShift(point1, point2): # NEW utility function
’’’Returns a tuple (dx, dy) which is the shift from point1 to point2.’’’
dx = point2.getX() - point1.getX()
dy = point2.getY() - point1.getY()
return (dx, dy)

Since the function calculates both a change in x and y, it returns a tuple.
A straightforward interactive method, getUserShift, is wrapped around this function to get the user’s

choice, which ultimately returns the same tuple.
def getUserShift(point, prompt, win): #NEW direction selection

’’’Return the change in position from the point to a mouse click in win.
First display the prompt string under point.’’’

text = Text(Point(point.getX(), 60), prompt)
text.draw(win)
userPt = win.getMouse()
text.undraw()
return getShift(point, userPt)

In the new version of the main driver, bounceBall, excerpted below, this interactive setting of (dx, dy)
is used. Note the multiple assignment statement to both dx and dy, set from the tuple returned from
getUserShift. This shift would generally be much too much for a single animation step, so the actual
values passed to bounceBall are scaled way down by a factor scale.

center = Point(winWidth/2, winHeight/2) #NEW central starting point
ball = makeDisk(center, radius, win)

#NEW interactive direction and speed setting
prompt = ’’’

Click to indicate the direction and
speed of the ball: The further you
click from the ball, the faster it starts.’’’

(dx, dy) = getUserShift(center, prompt, win)
scale = 0.01 # to reduce the size of animation steps

bounceInBox(ball, dx*scale, dy*scale, xLow, xHigh, yLow, yHigh, win)
The bounceInBox method has the same change to the loop as in the randomCircles.py example. The method
then requires the GraphWin, win, as a further parameter, since checkMouse is a GraphWin method..

3.3. WHILE STATEMENTS 118

You can look in Idle at the full source code for bounce2.py if you like. The changes from bounce1.py
are all marked with a comment starting with #NEW, and all the major changes have been described above.

In the examples so far of the use of checkMouse(), we have only used the fact that a point was clicked,
not which point. The next example version, bounce3.py, does use the location of mouse clicks that are read
with checkMouse() to change the direction and speed of the ball. Try it.

This version only slightly modifies the central animation function, bounceInBox, but wraps it in another
looping function that makes the direction and speed of the ball change on each mouse click. Hence the
mouse clicks detected in bounceInBox need to be remembered and then returned after the main animation
loop finishes. That requires a name, pt, to be given to the last mouse click, so it can be remembered. This
means modifying the main animation loop to initialize the variable pt before the loop and reset it at the
end of the loop, much as in the use of getMouse() for the interactive polygon creation. That explains the
first three NEW lines and the last two NEW lines in the revised bounceInBox:

def bounceInBox(shape, dx, dy, xLow, xHigh, yLow, yHigh, win):
’’’ Animate a shape moving in jumps (dx, dy), bouncing when
its center reaches the low and high x and y coordinates.
The animation stops when the mouse is clicked, and the
last mouse click is returned.’’’

delay = .001
pt = None #NEW
while pt == None: #NEW

shape.move(dx, dy)
center = shape.getCenter()
x = center.getX()
y = center.getY()
isInside = True #NEW
if x < xLow or x > xHigh:

dx = -dx
isInside = False #NEW

if y < yLow or y > yHigh:
dy = -dy
isInside = False #NEW

time.sleep(delay)
if isInside: # NEW don’t mess with dx, dy when outside

pt = win.checkMouse() #NEW
return pt #NEW

I initially made only the changes discussed so far (not the ones involving the new variable isInside). The
variable isInside was in response to a bug that I will discuss after introducing the simple function that
wraps around bounceInBox:

Each time the mouse is clicked, the ball is to switch direction and move toward the last click, until the
stopping condition occurs, when there is a click above the stop line. This is clearly repetitive and needs a
while loop. The condition is simply to test the y coordinate of the mouse click against the the height of the
stop line. The body of the loop is very short, since we already have the utility function getShift, to figure
out (dx, dy) values.

def moveInBox(shape, stopHeight, xLow, xHigh, yLow, yHigh, win): #NEW
’’’Shape bounces in win so its center stays within the low and high
x and y coordinates, and changes direction based on mouse clicks,
terminating when there is a click above stopHeight.’’’
scale = 0.01
pt = shape.getCenter() # starts motionless
while pt.getY() < stopHeight:

(dx, dy) = getShift(shape.getCenter(), pt)
pt = bounceInBox(shape, dx*scale, dy*scale,

3.3. WHILE STATEMENTS 119

xLow, xHigh, yLow, yHigh, win)
The variable pt for the last mouse click needed to be initialized some way. I chose to make the value be
the same as the initial position of the ball, so both dx and dy are initially 0, and the ball does not start in
motion. (Alternatives are in Exercise 3.3.4.3 below.)

I occasionally detected a bug when using the program. The ball would get stuck just outside the
boundary and stay there. The fact that it was slightly beyond the boundary was a clue: For simplicity I had
cheated, and allowed the ball to go just one animation step beyond the intended boundary. With the speed
and small step size this works visually. The original code was sure to make an opposite jump back inside at
the next step.

After some thought, I noticed that the initial version of the bounce3.py code for bounceInBox broke
that assumption. When the ball was where a bounce-back is required, a mouse click could change (dx, dy)
and mess up the bounce. The idea for a fix is not to let the user change the direction in the moment when
the ball needs to bounce back.

Neither of the original boundary-checking if statements, by itself, always determines if the ball is in
the region where it needs to reverse direction. I dealt with this situation by introducing a Boolean variable
isInside. It is initially set as True, and then either of the if statements can correct it to False. Then, at
the end of the loop, isInside is used to make sure the ball is safely inside the proper region when there is
a check for a new mouse click and a possible user adjustment to (dx, dy).

Exercise 3.3.4.3. ** (Optional) I chose to have the ball start motionless, by making the initial value
of pt (which determines the initial (dx, dy)) be the center of the ball. Write a variation startRandom.py
so pt is randomly chosen. Also make the initial location of the ball be random. You can copy the function
getRandomPoint from bounce1.py.

Exercise 3.3.4.4. ** Write a program madlib4.py that modifies the getKeys method of madlib2.py
to use a while loop. (This is not an animation program, but this section is where you have had the most
experience with while loops!) Hint: 6

Exercise 3.3.4.5. ** Write a graphical game program, findHole.py, “Find the Hole”. The program
should use a random number generator to select a point and a perhaps radius around that point. These
determine the target and are not revealed to the player initially. The user is then prompted to click around
on the screen to “find the hidden hole”. You should show the points the user has tried. Once the user selects
a point that is within the chosen radius of the mystery point, the mystery circle should appear, and the point
of the final successful mouse click should show. There should be a message announcing how many steps it
took, and the game should end.

Hint: you have already seen the code to determine the displacement (dx, dy) between two points: use
the getShift function in bounce2.py. Once you have the displacement (dx, dy) between the hidden center
and the latest mouse click, the distance between the points is (dx*dx + dy*dy)**0.5, using the Pythagorean
Theorem of geometry. If this distance is no more than the radius you have chosen for the mystery circle, then
the user has found the circle! You can use getShift as written, or modify it into a function getDistance
that directly returns the distance between two points.

Many elaborations on this game are possible! Have fun with it!

3.3.5. Fancier Animation Loop Logic (Optional). The final variation is the example program
bounce4.py, which has the same outward behavior as bounce3.py, but it illustrates a different internal
design decision. The bounce3.py version has two levels of while loop in two methods, moveInBox.for mouse
clicks and bounceInBox for bouncing. The bounce4.py version puts all the code for changing direction inside
the main animation loop in the old outer function, moveInBox. There are now three reasons to adjust (dx,
dy): bouncing off the sides, bouncing off the top or bottom, or a mouse click. That is a simplification and
unification of the logic in one sense. The complication now is that the logic for determining when to quit

6This is actually the most natural approach. I avoided while loops initially, when only for loops had been discussed. It
is redundant in the original approach, however, to find every instance of ’{’ to count the number of repetitions and then find
them all again when extracting the cue keys. A more natural way to control the loop is a while loop stopping when there are
no further occurrences of ’{’. This involves some further adjustments. You must cut the loop in a different place (to end after
searching for ’{’) . As discussed before, cutting a loop in a different place may require changes before and after the loop, too.

3.4. ARBITRARY TYPES TREATED AS BOOLEAN 120

is buried deep inside the if-else logic, not at the heading of the loop. The test for mouse clicks is inside the
while loop and further inside another if statment. The test of the mouse click may merely lead to a change in
(dx, dy), or is a signal to quit. Here is the revised code, with a discussion afterward of the return statement:

def moveInBox(shape, stopHeight, xLow, xHigh, yLow, yHigh, win):
’’’ Animate a shape moving toward any mouse click below stopHeight and
bouncing when its center reaches the low or high x or y coordinates.
The animation stops when the mouse is clicked at stopHeight or above.’’’

scale = 0.01
delay = .001
dx = 0 #NEW dx and dy no longer parameters
dy = 0 #NEW
while True: #NEW exit loop at return statement

center = shape.getCenter()
x = center.getX()
y = center.getY()
isInside = True
if x < xLow or x > xHigh:

dx = -dx
isInside = False

if y < yLow or y > yHigh:
dy = -dy
isInside = False

if isInside:
pt = win.checkMouse()
if pt != None: #NEW dealing with mouse click now here

if pt.getY() < stopHeight: # switch direction
(dx, dy) = getShift(center, pt)
(dx, dy) = (dx*scale, dy*scale)

else: #NEW exit from depths of the loop
return #NEW

shape.move(dx, dy)
time.sleep(delay)

Recall that a return statement immediately terminates function execution. In this case the function returns
no value, but a bare return is legal to force the exit. Since the testing is not done in the normal while
condition, the while condition is set as permanently True. This is not the most common while loop pattern!
It obscures the loop exit. The choice between the approach of bounce3.py and bounce4.py is a matter of
taste in the given situation.

3.4. Arbitrary Types Treated As Boolean

The following section would merely be an advanced topic, except for the fact that many common mistakes
have their meaning changed and obscured by the Boolean syntax discussed.

You have seen how many kinds of objects can be converted to other types. Any object can be converted
to Boolean (type bool). Read the examples shown in this Shell sequence:

>�>�> bool(2)
True
>�>�> bool(-3.1)
True
>�>�> bool(0)
False
>�>�> bool(0.0)
False
>�>�> bool(None)

3.4. ARBITRARY TYPES TREATED AS BOOLEAN 121

False
>�>�> bool(’’)
False
>�>�> bool(’0’)
True
>�>�> bool(’False’)
True
>�>�> bool([])
False
>�>�> bool([0])
True

The result looks pretty strange, but there is a fairly short general explanation: Almost everything is converted
to True. The only values among built-in types that are interpreted as False are

• The Boolean value False itself
• Any numerical value equal to 0 (0, 0.0 but not 2 or -3.1)
• The special value None
• Any empty sequence or collection, including the empty string(’’, but not ’0’ or ’hi’ or ’False’)

and the empty list ([], but not [1,2, 3] or [0])
A possibly useful consequence occurs in the fairly common situation where something needs to be done with
a list only if it is nonempty. In this case the explicit syntax:

if len(aList) > 0:
doSomethingWith(aList)

can be written with the more succinct python idiom
if aList:

doSomethingWith(aList)
This automatic conversion can also lead to extra trouble! Suppose you prompt the user for the answer to a
yes/no question, and want to accept ’y’ or ’yes’ as indicating True. You might write the following incorrect
code. Read it:

ans = input(’Is this OK? ’)
if ans == ’y’ or ’yes’:

print(’Yes, it is OK’)
The problem is that there are two binary operations here: ==, or. Comparison operations all have higher
precedence than the logical operations or, and. The if condition above can be rewritten equivalently with
parentheses. Read and consider:

(ans == ’y’) or ’yes’
Other programming languages have the advantage of stopping with an error at such an expression, since a
string like ’yes’ is not Boolean. Python, however, accepts the expression, and treats ’yes’ as True! To
test, run the example program boolConfusion.py, shown below:

ans = ’y’
if ans == ’y’ or ’yes’:

print(’y is OK’)

ans = ’no’
if ans == ’y’ or ’yes’:

print(’no is OK!!???’)
Python detects no error. The or expression is always treated as True, since ’yes’ is a non-empty sequence,
interpreted as True.

The intention of the if condition presumably was something like
(ans == ’y’) or (ans == ’yes’)

This version also translates directly to other languages. Another correct Pythonic alternative that groups
the alternate values together is

3.5. FURTHER TOPICS TO CONSIDER 122

ans in [’y’, ’yes’]

which reads pretty much like English. It is true if ans is in the specified list. The in operator actually works
with any sequence. The general syntax is

value in sequence

This is true when value is an element of the sequence.
Be careful to use a correct expression when you want to specifiy a condition like this.
Things get even stranger! Enter these conditions themselves, one at a time, directly into the Shell:

’y’ == ’y’ or ’yes’
’no’ == ’y’ or ’yes’

The meaning of (a or b) is exactly as discussed so far if each of the operands a and b are actually Boolean,
but a more elaborate definition is needed if an operand is not Boolean.

val = a or b

means
if bool(a):

val = a
else:

val = b

and in a similar vein:
val = a and b

means
if bool(a):

val = b
else:

val = a

This strange syntax was included in Python to allow code like in the following example program orNotBoolean.py.
Read and test if you like:

defaultColor = ’red’
userColor = input(’Enter a color, or just press Enter for the default: ’)
color = userColor or defaultColor
print(’The color is’, color)

which sets color to the value of defaultColor if the user enters an empty string.
Again, this may be useful to experienced programmers. The syntax can certainly cause difficult bugs,

particularly for beginners!
The not operator always produces a result of type bool.

3.5. Further Topics to Consider

Chapter 4 gives an application of Python to the web. It does not introduce new language features. We
have come to end of the new language features in this tutorial, but there are certainly more basic topics to
learn about programming and Python in particular, if you continue in other places:

(1) Creating your own kinds of objects (writing classes)
(2) Inheritance: Building new classes derived from existing classes
(3) Python list indexing and slicing, both to read and change parts of lists
(4) Other syntax used with loops: break, continue, and else
(5) Exception handling
(6) Python’s variable length parameter lists, and other options in parameter lists
(7) List comprehensions: a concise, readable, fast Pythonic way to make new lists from old ones
(8) Event handling in graphical programming
(9) Recursion (not special to Python): a powerful programming technique where functions call them-

selves

3.6. SUMMARY 123

Beyond these language features, Python has a vast collection of useful modules. An example program,
bbassign.py, is a real-world program that I have in regular use for processing inconveniently organized files
created by Blackboard for homework submissions. It is a command-line script that uses string methods
and slicing and both kinds of loops, as well is illustrating some useful componets in modules sys, os, and
os.path, for accessing command line parameters, listing file directories, creating directories, and moving and
renaming files.

3.6. Summary

(1) Comparison operators produce a Boolean result (type bool, either True or False): [3.1.4]

Meaning Math Symbol Python Symbols
Less than < <

Greater than > >
Less than or equal ≤ <=

Greater than or equal ≥ >=
Equals = ==

Not equal 6= !=

Comparisons may be chained as in a < b <= c < d != e. [3.1.5]
(2) The in operator: [3.4]

value in sequence
is True if value is one of the elements in the sequence.

(3) Interpretation as Boolean (True, False):
All Python data may be converted to Boolean (type bool). The only data that have a Boolean
meaning of False, in addition to False itself, are None, numeric values equal to 0, and empty
collections or sequences, like the empty list [] and the empty string ’’. [3.4]

(4) Operators on Boolean expressions [3.1.7]
condition1 and condition2 True only if both conditions are True
condition1 or condition2 True only if at least one conditions is True
not condition True when condition is False; False when condition is True
This description is sufficient if the result is used as a Boolean value (in an if or while condition).
See Section 3.4 for the advanced use when operands are not explicitly Boolean, and the result is
not going to be interpreted as Boolean.

(5) if Statements
(a) Simple if statement [3.1.2]

if condition:
indentedStatementBlockForTrueCondition

If the condition is true, then do the indented statement block. If the condition is not true,
then s
If the condition is true, then do the first indented block only. If the condition is not true, then
skip the first indented block and do the one after the else:.
If the condition is true, then do the first indented block only. If the condition is not true, then
skip the first indented block and do the one after the else:.

(b) if-else statement [3.1.3]
if condition:

indentedStatementBlockForTrueCondition
else:

indentedStatementBlockForFalseCondition
If the condition is true, then do the first indented block only. If the condition is not true, then
skip the first indented block and do the one after the else:.

(c) The most general syntax for an if statement, if-elif-...-else [3.1.5]:
if condition1 :

indentedStatementBlockForTrueCondition1

3.6. SUMMARY 124

elif condition2 :
indentedStatementBlockForFirstTrueCondition2

elif condition3 :
indentedStatementBlockForFirstTrueCondition3

elif condition4 :
indentedStatementBlockForFirstTrueCondition4

else:
indentedStatementBlockForEachConditionFalse

The if, each elif, and the final else line are all aligned. There can be any number of elif
lines, each followed by an indented block. (Three happen to be illustrated above.) With this
construction exactly one of the indented blocks is executed. It is the one corresponding to the
first True condition, or, if all conditions are False, it is the block after the final else line

(d) if-elif [3.1.5]
The else: clause above may also be omitted. In that case, if none of the conditions is true,
no indented block is executed.

(6) while statements [3.3.1]
while condition:

indentedStatementBlock
Do the indented block if condition is True, and at the end of the indented block loop back and
test the condition again, and continue repeating the indented block as long as the condition is True
after completing the indented block. Execution does not stop in the middle of the block, even if
the condition becomes False at that point.

A while loop can be used to set up an (intentionally) apparently infinite loop by making
condition be just True. To end the loop in that case, there can be a test inside the loop that
sometime becomes True, allowing the execution of a return statement to break out of the loop.
[3.3.5]

(7) range function with three parameters [3.3.1]
range(start, pastEnd, step)
Return a list of elements [start, start+step, ...], with each element step from the previousCGI
one, ending just before reaching pastEnd. If step is positive, pastEnd is larger than the last
element. If step is negative, pastEnd is smaller than the last element.

(8) Type tuple
(expression , expression , and so on)
(expression ,)
()
(a) A literal tuple, with two or more elements, consists of a comma separated collection of values

all enclosed in parentheses. A literal tuple with only a single element must have a comma after
the element to distinguish from a regular parenthesized expression. [3.2]

(b) A tuple is a kind of sequence.
(c) Tuples, unlike lists, are immutable (may not be altered)..

(9) Additional programming techniques
(a) These techniques extend the techniques listed in the summary of the previous chapter. [2.6]
(b) The basic pattern for programming with a while loop is [3.3.1]

initialization
while continuation condition :

main action to repeat
prepare variables for next loop

(c) Interactive while loops generally follow the pattern [3.3.3]
input first data from user
while continue based on test of user data :

process user data
input next user data

Often the code to input the first data and the later data is the same, but it must appear in
both places!

3.6. SUMMARY 125

(d) Sentinel Loops [3.3.3]
Often the end of the repetition of a data-reading loop is indicated by a sentinel in the data: a
data value known to both the user and the program to not be regular data, that is specifically
used to signal the end of the data.

(e) Nesting Control Flow Statements [3.1.6]
(i) If statements may be nested inside loops, so the loop does not have to execute all the

same code each time.
(ii) Loops may be nested. The inner loop completes its repetitions for each time through

the outer loop.
(f) Breaking a repeating pattern into a loop [3.3.4]

Since a loop is basically circular, there may be several choices of where to split it to list it in
the loop body. The split point needs to be where the continuation test is ready to be run, but
that may still allow flexibility. When you choose to change the starting point of the loop, and
rotate statements between the beginning and the end of the loop, you change what statements
need to be included before and after the loop, sometimes repeating or undoing actions taken
in the loop.

(g) Tuples in lists [3.2]
A list may contain tuples. A for-each loop may process tuples in a list, and the for loop
heading can do multiple assignments to variables for each element of the next tuple.

(h) Tuples as return values [3.2]
A function may return more than one value by wrapping them in a tuple. The function may
then be used in a multiple assignment statement to extract each of the returned variables.

(10) Graphics
(a) Zelle’s Graphics GraphWin method checkMouse() allows mouse tests without stopping ani-

mation, by testing the last mouse click, not waiting for a new one. [3.3.4]
(b) The most finished examples of using graphics.py are in [3.2] and [3.3.4]

CHAPTER 4

Dynamic Web Pages

This chapter leads up to the creation of dynamic web pages. These pages and supporting programs and
data may be tested locally via a simple Python web server available on your local machine. If you have
access, the pages and programs may be uploaded to a public server accessible to anyone on the Internet.

A few disclaimers:
• This tutorial does not cover uploading to an account on a public server.
• No core Python syntax is introduced in this Chapter. Only a few methods in a couple of Python
library modules are introduced.

• The chapter is by no means a major source of information about HTML code. That is mostly
avoided with the use of a modern word-processor-like HTML editor. As a specific example, the
open source HTML editor Kompozer is discussed.

The chapter does allow you to understand the overall interaction between a browser (like Firefox on your
local machine) and a web server and to create dynamic web content with Python. We treat interaction with
the web basically as a mechanism to get input into a Python program and data back out and displayed.
Web pages displayed in your browser are used for both the input and the output. The advantage of a public
server is that it can also be used to store data accessible to people all over the world.

There are a number of steps in the development in this chapter, so I start with an overview:
(1) A few bits about the basic format of hypertext markup language are useful to start.
(2) The simplest pages to start writing in Kompozer are just static web pages, formatted like a word-

processing document.
(3) Next we look at pages generated dynamically. An easy way to accomplish this is to create specialized

static pages to act as templates into which the dynamic data is easily embedded. Web page creation
can be tested totally locally, by creating HTML files and pointing your web browser to them.
Initially we supply input data by our traditional means (keyboard input or function parameters),
and concentrate on having our Python program convert the input to the desired output, and display
this output in a web page.

(4) We generate data from within a web page, using web forms (generated via Kompozer). Initially we
will test web forms by automatically dumping their raw data.

(5) To fully integrate a browser and server, we use 1) web forms to provide data, 2) a Python program
specified on the server to transform the input data into the desired output, 3) embed the output
in a new dynamic web page that gets sent back to your browser. This Python server program
transforms the input data, and generates output web pages much like we did in step 3.

(6) Finally, if you have an account like Loyola Computer Science students, you can upload and show
off your work on your own personal web site, accessible to everyone on the Internet.

4.1. Web page Basics

4.1.1. Format of Web Page Markup. Documents can be presented in many forms. A simple editor
like Idle or Windows’ Notepad produce plain text: essentially a long string of meaningful characters.

Documents can be displayed with formatting of parts of the document. Web pages allow different fonts,
italic, and boldfaced emphases, and different sized text, all to be included. Microsoft Word, Open Office,
and Latex, all display documents with various amounts of formatting. The syntax for the ways different
systems encode the formatting information varies enormously.

If you look at a Microsoft Word document in a plain text editor like notepad, you should be able to
find the original text buried inside, but most of the symbols associated with the formatting are unprintable
gibberish as far as a human is concerned.

126

4.1. WEB PAGE BASICS 127

Hypertext markup language (HTML) is very different in that regard. It produces a file of entirely
human-readable characters, that could be produced with a plain text editor.

For instance in HTML, the largest form of a heading with the text “Web Introduction”, would look like

<h1>Web Introduction</h1>
The heading format is indicated by bracketing the heading text ’Web Introduction’ with markup sequences,
<h1> beforehand, and </h1> afterward. All HTML markup is delimited by tags enclosed in angle brackets,
and most tags come in pairs, surrounding the information to be formatted. The end tag has an extra ’/’.
Here ’h’ stands for heading, and the number indicates the relative importance of the heading. (There is also
h2, h3, for smaller headings.) In the early days of HTML editing was done in a plain text editor, with
the tags being directly typed in by people who memorized all the codes!

With the enormous explosion of the World Wide Web, specialized software has been developed to make
web editing be much like word processing, with a graphical interface, allowing formatting to be done by
selecting text with a mouse and clicking menus and icons labeled in more natural language. The software
then automatically generates the necessary markup. An example used in these tutorials is the open source
Kompozer, available at http://kompozer.net. (Careful – although this is free, open source software, the
URL is Kompozer.net, not Kompozer.org. There is a site Kompozer.org that is designed to confuse you!)
You can open Kompozer and easily generate a document with a heading, and italic and boldfaced portions....

4.1.2. Introduction to Static Pages in Kompozer. This section introduces the Kompozer web
page editor to create static pages. Kompozer is used because it is free software, and is pretty easy to use, like
a common word processor. Unlike a common word processor you will be able to easily look at the HTML
markup code underneath. It is not necessary to know a lot about the details of the markup codes for HTML
files to use Kompozer.

We will use static pages later as a part of making dynamic pages, using the static pages as templates in
which we insert data dynamically.

To creating static web pages
(1) If you are in a Loyola University Windows lab, go to the start menu -> Loyola software -> Internet

-> Kompozer. (It may be under Math and Comp Sci instead.) You may get pop-up window
wanting to count users of Kompozer. Click OK as another user of Kompozer.

(2) However you start Kompozer, go to the File menu and click on New. You will get what looks like
an empty document.

(3) Look at the bottom of your window. You should see a ’Normal’ tabs selected, with other choices
beside it, including a Source tab. Click on the Source tab. You should see that, though you have
added no content, you already have the basic markup to make an html page!

(4) Click again on the Normal tab to go back to the Normal view (of no content at the moment).
(5) Assume you are making a home page for yourself. Make a title and some introductory text. Use

regular word processor features like marking your title as Heading 1 in the drop down box on a
menu bar. (The drop down menu may start off displaying ’Paragraph’ or ’Body Text’.) You can
select text and make it bold or italics; enlarge it ... using the editing menu or icons.

(6) Before getting too carried away, save your document as index.html in the existing www directory
under your earlier Python examples. It will save a lot of trouble if you keep your web work together
in this www directory, where I have already placed a number of files yo will want to keep together
in one directory.

(7) Just for comparison, switch back and forth between the Normal and Source views to see all that
has gone on underneath your view, particularly if you edited the format of your text. Somewhere
embedded in the Source view you should see all the text you entered. Some individual characters
have special symbols in HTML that start with an ampersand and end with a semicolon. Again, at
this point it is more important the understand that there are two different views than to be able
to reproduce the Source view from memory.

(8) You can use your web browser to see how your file looks outside the editor. The easiest way to
do this is to go to the web browser’s File menu and Open File entry, and find the index.html file.
It should look pretty similar to the way it looked in Kompozer, but if you put in hyperlinks, they
should now be active.

4.2. COMPOSING WEB PAGES IN PYTHON 128

The discussion of web page editing continues in Section 4.3.4, on html forms, but first we get Python into
the act.

4.1.3. Editing and Testing Different Document Formats. In this chapter you will be working
with several different types of documents that you will edit and test in very different ways. The ending of
their names indicate their use. Each time a new type of file is discussed in later sections, the proper ways to
work with it will be repeated, but with all the variations, it is useful to group them all in one place now:

...Web.py: My convention for regular Python programs taking all their input from the keyboard,
and producing output displayed on a web page. These programs can be run like other Python
programs, directly from an operating system folder or from inside Idle.

...html: Web documents most often composed in an editor like Kompozer. By my convention, these
are split into two categories
...Template.html or ...Output.html: are not intended to be displayed directly in a browser,

but instead are read by a Python program (...cgi or ...Web.py) to create a template or format
string for a final web page that is dynamically generated inside the Python program.

Other: files ending in .html are intended to be directly viewed in a web browser. Except for the
simple static earlier examples in Section 4.1.2, they are designed to reside on a web server,
where they can pass information to a Python CGI program. To make this work on your
computer:
(1) Have all the web pages in the same directory as the example program localCGIServer.py
(2) Have localCGIServer.py running, started from a directory window, not from inside Idle
(3) In the browser URL field, the web page file name must be preceded by http://localhost:8080/.

For example, http://localhost:8080/adder.html would refer to the file adder.html, in the
same directory as the running localCGIServer.py.

...cgi: Python CGI programs, intended to be run from a web server. It is sometimes useful to access
a CGI program directly in a browser. To run on your computer, like the Other html files above, you
need to refer to a URL starting with http://localhost:8080/. For example, http://localhost:8080/now.cgi
would call the file now.cgi, which must be in the same directory as the running localCGIServer.py.
More often CGI programs are referenced in a web form, and the program is called indirectly by the
web server. CGI programs can be edited and saved inside Idle, but they do not run properly from
inside Idle.

4.2. Composing Web Pages in Python

4.2.1. Dynamically Created Static Local Pages from Python. For the rest of this chapter, the
example files will come from the www directory under the main examples directory you unzipped. I will
refer to example file there as “example www files”.

As the overview indicated, dynamic web applications typically involve getting input in from a web page
form, processing the input in a program on the server, and displaying output to a web page. Introducing all
these new ideas at once could be a lot to absorb, so this section treats only the last part, output to the web,
and uses familiar keyboard input into a regular Python program.

Follow this sequence of steps:
Open the example www file hello.html in your browser, to see what it looks like.
Change your browser view - for instance go back to the previous page you displayed.
Open the same hello.html file in Kompozer.
In Kompozer, switch to the Source view (clicking the Source tab). Sometimes you will want to copy

HTML text into a Python program. For instance, I selected and copied the entire contents of the hello.html
source view and pasted it into a multi line string in the Python program shown and discussed below.

Careful, note the change from past practice here: Start Python from inside the www directory. In
Windows start the Idle shortcut link that I placed in the www directory, not the original example directory.
Open the www example program helloWeb1.py in an Idle edit window.

Run it. You should see a familiar web page appear in your default browser (possibly not the one you
have been using). This is obviously not a very necessary program, since you can select this page directly
in your browser! Still, one step at a time, it illustrates several useful points. The program is copied below.
Read it:

4.2. COMPOSING WEB PAGES IN PYTHON 129

’’’A simple program to create an html file from a given string,
and call the default web browser to display the file.’’’

contents = ’’’<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta content="text/html; charset=ISO-8859-1"
http-equiv="content-type">
<title>Hello</title>

</head>
<body>
Hello, World!
</body>
</html>
’’’

def main():
browseLocal(contents, ’helloPython.html’)

def strToFile(text, filename):
"""Write a file with the given name and the given text."""
output = open(filename,"w")
output.write(text)
output.close()

def browseLocal(webpageText, filename):
"""Start your webbrowser on a local file containing the text."""
strToFile(webpageText, filename)
import webbrowser
webbrowser.open(filename)

main()

This program encapsulates two basic operations into the last two functions that will be used over and over.
The first, strToFile, has nothing new, it just puts specified text in a file with a specified name. The second,
browseLocal, does more. It takes specified text (presumably a web page), puts it in a file, and directly
displays the file in your web browser. It uses the open function from the webbrowser module to start the
new page in your web browser.

In this particular program the text that goes in the file is just copied from the literal string named
contents in the program.

This is no advance over just opening the file in the browser directly! Still, it is a start towards the aim
of creating web content dynamically.

An early example in this tutorial displayed the fixed ’Hello World!’ to the screen. This was later
modified in hello_you4.py to incorporate user input using the string format method of Section 1.12.2,

person = input(’Enter your name: ’)
greeting = ’Hello {person}!’.format(**locals())
print(greeting)

Similarly, I can turn the web page contents into a format string, and insert user data. Load and run the
www example program helloWeb2.py.

The simple changes from helloWeb1.py are marked at the beginning of the file and shown below. I
modified the web page text to contain ’Hello, {person}!’ in place of ’Hello, World!’, making the
string into a format string, which I renamed to the more appropriate pageTemplate. The changed initial
portion with the literal string and and the main program then becomes

pageTemplate = ’’’

4.2. COMPOSING WEB PAGES IN PYTHON 130

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta content="text/html; charset=ISO-8859-1"
http-equiv="content-type">
<title>Hello</title>

</head>
<body>
Hello, {person}!
</body>
</html> ’’’ # NEW note ’{person}’ two lines up

def main():
person = input(’Enter a name: ’) # NEW
contents = pageTemplate.format(**locals()) # NEW
browseLocal(contents, ’helloPython2.html’) # NEW filename

incorporating the person’s name into the contents for the web page before saving and displaying it.
In this case, I stored the literal format string inside the Python program, but consider a different

approach:
Load and run the www example program helloWeb3.py. It behaves exactly like helloWeb2.py, but is

slightly different internally – it does not directly contain the web page template string. Instead the web page
template string is read from the file helloTemplate.html.

Below is the beginning of helloWeb3.py, showing the only new functions. The first, fileToStr, will be
a standard function used in the future. It is the inverse of strToFile.

The main program obtains the input. In this simple example, the input is used directly, with little
further processing. It is inserted into the web page, using ’helloTemplate.html’ as a format string.

def fileToStr(fileName): # NEW
"""Return a string containing the contents of the named file."""
fin = open(fileName);
contents = fin.read();
fin.close()
return contents

def main():
person = input(’Enter a name: ’)
contents = fileToStr(’helloTemplate.html’).format(**locals()) # NEW
browseLocal(contents, ’helloPython3.html’) # NEW filename

Although helloTemplate.html is not intended to be viewed by the user (being a template), you should open
it in a web editor (like Kompozer) to look at it. It is legal to create a web page in a web page editor with
expressions in braces embedded in it! If you look in the source view in Kompozer you will see something
similar to the literal string in helloWeb2.py, except the lines are broken up differently. (This makes no
difference in the formatted result, since in html, a newline is treated the same way as a space.)

Back in the Normal mode, add some formatting like italics, and an extra line of text, and save the file
again (under the same name). Run the program helloWeb3.py again, and see that you have been able to
change the appearance of the output without changing the Python program itself. That is the aim of using
the template html page, allowing the web output formatting to be managed mostly independently from the
Python program.

A more complicated but much more common situation is where the input data is processed and trans-
formed into results somehow, and these results, often along with some of the original input, are embedded
in the web page that is produced.

As a simple example, load and run the www example program additionWeb.py, which uses the template
file additionTemplate.html.

4.3. CGI - DYNAMIC WEB PAGES 131

The aim in the end of this chapter is to have user input come from a form on the web rather than the
keyboard on a local machine, but in either case the input is still transformed into results and all embedded
in a web page. To make parts easily reusable, I obtain the input in a distinct place from where the input is
processed. In keeping with the later situation with web forms, all input is of string type (using keyboard
input for now).

Look at the program. You will see only a few new lines! Because of the modular design, most of the
program is composed of recent standard functions reused.

The only new code is at the beginning and is shown here:
def processInput(numStr1, numStr2): # NEW

’’’Process input parameters and return the final page as a string.’’’
num1 = int(numStr1) # transform input to output data
num2 = int(numStr2)
total = num1+num2
return fileToStr(’additionTemplate.html’).format(**locals())

def main(): # NEW
numStr1 = input(’Enter an integer: ’) # obtain input
numStr2 = input(’Enter another integer: ’)
contents = processInput(numStr1, numStr2) # process input into a page
browseLocal(contents, ’helloPython3.html’) # display page

The input is obtained (via input for now), and it is processed into a web page string, and as a separate step
it is displayed in a local web page.

There are a few things to note:
• All input is strings. Before the numerical calculations, the digit strings must be converted to
integers.

• I do calculate (a very simple!) result and use it in the output web page.
• Although it is not in the Python code, an important part of the result comes from the web page for-
mat string in additionTemplate.html, which includes the needed variable names in braces, {num1},
{num2}, and {total}.

Exercise 4.2.1.1. ** Save additionWeb.py as quotientWeb.py. Modify it to display the results of a
division problem in a web page. You can take your calculations from Exercise 1.10.3.2. You should only need
to make Python changes to the processInput and main functions. You will also need the HTML for the
page displayed. Make a web page template file called quotientTemplate.html and read it into your program.

In this version generated by a regular Python program, the web page is just a file generated by the
program, and then the file gets displayed in the browser. When you call browseLocal, you must supply a
filename for the file to be created, but the name is totally arbitrary.

4.3. CGI - Dynamic Web Pages

CGI stands for Common Gateway Interface. This interface is used by web servers to process information
requests supplied by a browser. Python has modules to allow programs to do this work. The convention used
by many servers is to have the server programs that satisfy this interface end in ’.cgi’. That is the convention
used below. All files below ending in ’.cgi’ are CGI programs on a web server, and in this chapter, they will
all be Python programs (though there are many other languages in use for this purpose). These programs
are often called scripts, so we will be dealing with Python CGI scripts.

4.3.1. An Example in Operation. The first part of this section requires you to have access to the
Internet. Later you will also see that you can illustrate the exact same actions on your own local machine.

For a very simple but complete example, use your browser to go to the page on the public Loyola server,
http://cs.luc.edu/anh/python/hands-on/examples/www/adder.html. You see a web form. Follow the
instructions, enter numbers, and click on the Find Sum button. You get back a page that obviously used
your data. This is the idea that you can generalize. First consider the basic execution steps behind the
scene:

(1) The data you type is handled directly by the browser. It recognizes forms.

4.3. CGI - DYNAMIC WEB PAGES 132

(2) An action instruction is stored in the form saying what to do when you press a button indicating
you are ready to process the data (the Find Sum button in this case).

(3) In the cases we consider in this tutorial, the action is given as a web resource, giving the location
of a CGI script on some server (in our cases, the same directory on the server as the current web
page).

(4) When you press the button, the browser sends the data that you entered to that web location (in
this case adder.cgi in the same folder as the original web page).

(5) The server recognizes the web resource as an executable script, sees that it is a Python program,
and executes it, using the data sent along from the browser form as input.

(6) The script runs, manipulates its input data into some results, and puts those results into the text
of a web page that is the output of the program.

(7) The server captures this output from the program and sends it back to your browser as a new page
to display.

(8) You see the results in your browser.
This also works locally, entirely on your own computer, using a simple server built into Python. (Internet
no longer needed!)

In an operating system file window, go to the folder with the www examples. Double click on localCGIServer.py
to start the local, internal, web server. You should see a console window pop up, saying “Localhost CGI
server started” . Once the server is started, leave the console window there as long as you want the local
server running. Do not start the local server running from inside Idle.

Caution: If the server aborts and gives an error message about spaces in the path, look at the path
through the parent directories over this www directory. If any of the directory names have spaces in them,
the local file server will not work. Either go up the directory chain and alter the directory names to eliminate
spaces or move the examples directory to a directory that does not have this issue. In particular, you need
to move your examples directory if it is under the ’My Programs’ directory.

Back in the www directory,
(1) Open the web link http://localhost:8080/adder.html (preferably in a new window, separate

from this this tutorial).
(2) You should see an adder form in your browser again. Note that the web address no longer includes

’cs.luc.edu’. Instead it starts with ’localhost:8080’, to reference the local Python server you started.
Fill out the form and test it as before.

(3) Look at the console window. You should see a log of the activity with the server. Close the server
window.

(4) Reload the web link http://localhost:8080/adder.html. You should get an error, since you
refer to localhost, but you just stopped the local server.

For the rest of this chapter, we will be wanting to use the local server, so restart localCGIServer.py, and
keep it going.

4.3.2. A Simple Buildup. Before we get too complicated, consider the source code of a couple of
even simpler examples.

4.3.2.1. hellotxt.cgi. The simplest case is a CGI script with no input. The script just generates plain
text, rather than HTML. Assuming you have your local server going, you can go to the link for hellotxt.cgi,
http://localhost:8080/hellotxt.cgi. The code is in the www example directory, hellotxt.cgi, and
below for you to read:

#!/usr/bin/python

Required header that tells the browser how to render the text.
print("Content-Type: text/plain\n\n") # here text -- not html

Print a simple message to the display window.
print("Hello, World!\n")

The top line is what tells a Unix server that this is a Python program. It says where to find the Python
interpreter to process the rest of the script. This exact line is always required to run on a Unix server (like

4.3. CGI - DYNAMIC WEB PAGES 133

the one Loyola’s Computer Science Department uses). The line is ignored in Windows. If you leave the line
there as a part of your standard text, you have one less thing to think about when uploading to a Unix
server.

The first print function is telling the server which receives this output, that the format of the rest of
the output will be plain text. This information gets passed back to the browser later. This line should be
included exactly as stated IF you only want the output to be plain text (the simplest case, but not our usual
case).

The rest of the output (in this case just from one print function) becomes the body of the plain text
document you see on your browser screen, verbatim since it is plain text. The server captures this output
and redirects it to your browser.

4.3.2.2. hellohtml.cgi. We can make some variation and display an already determined html page rather
than plain text. Try the link http://localhost:8080/hellohtml.cgi. The code is in the www example
directory, hellohtml.cgi, and below for you to read:

#!/usr/bin/python

print("Content-Type: text/html\n\n") # html markup follows

print("""
<html>
<Title>Hello in HTML</Title>
<body>

<p>Hello There!</p>
<p>Hi There!</p>

</body>
</html> """)

There are two noteworthy changes. The first print function now declares the rest of the output will be html.
This is the standard line you will be using for your CGI programs. The remaining print function has the
markup for an html page. Note that the enclosing triple quotes work for a multi line string. Other than as
a simple illustration, this CGI script has no utility: Just putting the contents of the last print function in a
file for a static web page hello.html is much simpler.

4.3.2.3. now.cgi. One more simple step: we can have a CGI script that generates dynamic output by
reading the clock from inside of Python: Try the link http://localhost:8080/now.cgi. Then click the
refresh button and look again. This cannot come from a static page. The code is in the www example
directory, now.cgi, and below for you to read:

#!/usr/bin/python

import time
print("Content-Type: text/html\n\n") # html markup follows

timeStr = time.strftime("%c") # obtains complete current time

htmlFormat = """
<html>
<Title>The Time Now</Title>

<body>
<p>The current Central date and time is: {timeStr}</p>

</body>
</html> """

print(htmlFormat.format(**locals())) # see embedded {timeStr} ^ above

This illustrates a couple more ideas: First a library module, time, is imported and used to generate the
string for the current date and time.

4.3. CGI - DYNAMIC WEB PAGES 134

The web page is generated like in helloWeb2.py, embedding the dynamic data (in this case the time)
into a literal web page format string. (Note the embedded {timeStr}.) Unlike helloWeb2.py, this is a CGI
script so the web page contents are delivered to the server just with a print function.

4.3.2.4. adder.cgi. It is a small further step to processing dynamic input. Try filling out and submitting
the adder form one more time, http://localhost:8080/adder.html. This time notice the URL at the
top of the browser page when the result is displayed. You should see something like the following (only the
numbers should be the ones you entered):

http://localhost:8080/adder.cgi?x=24&y=56
This shows one mechanism to deliver data from a web form to the CGI script that processes it.

The names x and y are used in the form (as we will see later) and the data you entered is associated
with those names. In fact a form is not needed at all to create such an association: If you directly go
to the URLs http://localhost:8080/adder.cgi?x=24&y=56 or http://localhost:8080/adder.cgi?x=
-12345678924&y=33333333333, you get arithmetic displayed without the form. This is just a new input
mechanism into the CGI script.

You have already seen a program to produce this adder page from inside a regular Python program
taking input from the keyboard. The new CGI version, adder.cgi, only needs to make a few modifications to
accept input this way from the browser. New features are commented in the source and discussed below. The
new parts are the import statement through the main function, and the code after the end of the fileToStr
function. Read at least these new parts in the source code shown below:

#!/usr/bin/python

import cgi # NEW

def main(): # NEW except for the call to processInput
form = cgi.FieldStorage() # standard cgi script lines to here!

use format of next two lines with YOUR names and default data
numStr1 = form.getfirst("x", "0") # get the form value associated with form

name ’x’. Use default "0" if there is none.
numStr2 = form.getfirst("y", "0") # similarly for name ’y’
contents = processInput(numStr1, numStr2) # process input into a page
print(contents)

def processInput(numStr1, numStr2): # from additionWeb.py
’’’Process input parameters and return the final page as a string.’’’
num1 = int(numStr1) # transform input to output data
num2 = int(numStr2)
total = num1+num2
return fileToStr(’additionTemplate.html’).format(**locals())

the remaining code should become standard in your cgi scripts
def fileToStr(fileName):

"""Return a string containing the contents of the named file."""
fin = open(fileName);
contents = fin.read();
fin.close()
return contents

try: # NEW
print("Content-type: text/html\n\n") # say generating html
main()

except:
cgi.print_exception() # catch and print errors

First the overall structure of the code:

4.3. CGI - DYNAMIC WEB PAGES 135

• To handle the CGI input we import the cgi module.
• The main body of the code is in a main method, following good programming practice.
• After the definition of main come supporting functions, each one copied from the earlier local web

page version, additionWeb.py.
At the end is the new, but standard, cgi wrapper code for main(). This is code that you
can always just copy. I chose to put the initial print function here, that tells the server
html is being produced. That mean the main method only needs to construct and print
the actual html code. Also keep the final try-except block that catches any execution
errors in the program and generates possibly helpful trace information that you can see
from your browser. (Writing such error catching code in general is not covered in this
introductory tutorial.)

The main function has three sections, as in the local web page version: read input (this time from the form),
process it, and generate the html output.

• Reading input: The first line of main is a standard one (to copy) that sets up an object called form
that holds the CGI form data accompanying the web request sent by the browser. You access the
form data with statements like the next two that have the pattern:

variable = form.getfirst(nameAttrib, default)
If there is a form field with name nameAttrib, its value from the browser data is assigned to variable.
If no value is given in the browser’s data for nameAttrib, variable is set equal to default instead.
In this way data associated with names given by the browser can transferred to your Python CGI
program. In this program the values associated with the browser-supplied names, ’x’ and ’y’, are
extracted. I use Python variable names that remind you that all values from the browser forms are
strings.

• The processInput function that is passed the input parameters from whatever source, is exactly
the same as in additionWeb.py, so we already know it works!

• Output the page. In a CGI script this is easier than with the local web pages: just print it – no
need to save and separately display a file! The server captures the “printed” output.

This program can now serve as a template for your own CGI scripts: The only things you need to change
are the lines in main() that get the input from a web form, and the contents of processInput, and the
processInput part can be written and tested earlier with a local web page. While this is the only Python
code, you still need to create an output web page template, and refer to it in the parameter of fileToStr.

4.3.3. Errors in CGI Scripts. Before you start running your own CGI scripts on the local server, it
is important to understand how different kinds of errors that you might make will be handled.

Syntax errors: You are encouraged to check for syntax errors inside Idle, by either going to the Run
menu and selecting Check Module, or by using the shortcut Alt-X. If you fail to do this and try
running a script with a syntax error, the error trace appears in the console window that appears
when you start the local server. If you want an illustration, you might try changing adder.cgi,
making an error like impor cgi, and try using adder.html with the flawed script. (Then fix it and
try again.)

Execution Errors: The error trace for execution errors is displayed in your web browser, thanks to
the final standard code with the try-catch block at the end of the CGI script. If you omit that
final standard code, you completely lose descriptive feedback: Be sure to include that standard
code! You can also illustrate here. Get an indexing error by introducing the statement bad =
’abc’[5] in the main function. (Then take it out.)

Logical Errors: Since your output appears in the web browser, when you produced something legal
but other than what you intended, you see in the browser . If it is a formatting error, fix your
output page template. If you get wrong answers, check your processInput.

We have not covered web forms yet, but rather than bite off too much at once, this is a good time to write
your own first CGI script.

Exercise 4.3.3.1. ** Modify Exercise 4.2.1.1 and save it as a CGI script quotient.cgi, in the same
directory where you have localCGIServer.py and your output page template. Make quotient.cgi take its
input from a browser, rather than the keyboard. This means merging all the standard CGI code from

4.3. CGI - DYNAMIC WEB PAGES 136

adder.cgi and the processInput code from your quotientWeb.py. You can keep the same browser data names,
x and y, as in adder.cgi, so the main method should not need changes from adder.cgi. Remember to test
for syntax errors inside Idle, and to have the local web server running when you run the CGI script in
your browser. Since we have not yet covered web forms, test your CGI script by entering test data into
the URL in the browser, like by going to links http://localhost:8080/quotient.cgi?x=24&y=56 and
http://localhost:8080/quotient.cgi?x=36&y=15. After trying these links, you can edit the numbers in
the URL in the browser to see different results.

4.3.4. Editing HTML Forms. This section is a continuation of Section 4.1.2. It is about HTML
editing, not Python. HTML forms will allow user-friendly data entry for Python CGI scripts. This is the
last elaboration to allow basic web interaction: Enter data in a form, submit it, and get a processed result
back from the server.

The initial example, adder.html, used only two text fields. To see more common form fields, open
http://localhost:8080/commonFormFields.html. (Make sure your local server is still running!)

To allow easy concentration on the data sent by the browser, this form connects to a simple CGI script
dumpcgi.cgi, that just dumps all the form data to a web page. Press the submit button in the form, and
see the result. Back up from the output to the previous page, the form, and change some of the data in all
kinds of fields. Submit again and see the results. Play with this until you get the idea clearly that the form
is passing on your data.

To play with it at a deeper level, open this same file, the www example commonFormFields.html, in
Kompozer. The static text in this page is set up as a tutorial on forms in Kompozer. Read the content
of the page describing how to edit the overall form and each type of individual field. Textbooks such as
the Analytical Engine give another discussion of some of the attributes associated with each field type.
Read the static text about how to edit individual fields, and change some field parameters, save the file
and reload it in your browser, and submit again. If you change the name or value attributes, they are
immediately indicated in the dumped output. If you change things like the text field size, it makes a change
in the way the form looks and behaves. You can return to the original version: An extra copy is saved in
commonFormFieldsOrig.html.

Now open adder.html in Kompozer. Switch to the Source view. This is a short enough page that you
should not get lost in the source code. The raw text illustrates another feature of html: attributes. The
tag to start the form contains not only the tag code form, but also several expressions that look like Python
assignment statements with string values. The names on the left-hand side of the equal signs identify a type
of attribute, and the string value after the equal sign gives the corresponding value for the attribute. The
tag for many kinds of input fields is input. Notice that each field includes name and value attributes. See
that the ’x’ and ’y’ that are passed in the URL by the browser come from the names given in the HTML
code for the corresponding fields.

Kompozer and other web editors translate your menu selections into the raw html code with proper
attribute types. This high level editor behavior is convenient to avoid having to learn and debug the exact
right html syntax! On the other hand, using pop-up field editing windows has the disadvantage that you
can only see the attributes of one field at a time. Particularly if you want to modify a number of name or
value attributes, it is annoying that you need a number of mouse clicks to go from one field to the next. If
you only want to modify the values of existing attributes like name and value, it may be easier to do in the
source window, where you can see everything at once. Making syntax errors in not very likely if you only
change data in quoted value strings.

The action URL is a property of the entire form. To edit it in Kompozer, right click inside the form, but
not on any field element, and select the bottom pop-up choice, Form Properties. Then you see a window
listing the Action URL and you can change the value to the name of the CGI script that you want to
receive the form data. When you create your own web form, I suggest you make the initial action URL be
dumpcgi.cgi. This will allow you to debug your form separate from your CGI script. When you have tested
that your web form has all the right names and initial values, you can change the action URL to your CGI
script name (like quotient.cgi), and go on to test the combination of the form and the CGI script!

Exercise 4.3.4.1. ** Complete the web presentation for quotient.cgi of Exercise 4.3.3.1 by creating a
web form quotient.html that is intelligible to a user and which supplies the necessary data to quotient.cgi.

4.3. CGI - DYNAMIC WEB PAGES 137

Be sure to test the new form on your local server! Remember that you must have the local server
running first. You must have all the associated files in the same directory as the server program you are
running, and you cannot just click on quiotient.html in a file browser. You must start it from the the URL
http://localhost:8080/quotient.html, that specifically refers to the server localhost.

Exercise 4.3.4.2. ** Make a simple complete dynamic web presentation with a CGI script that uses at
least three user inputs from a form. The simplest would be to just add three numbers instead of two. Call
your form dynamic.html. Call your CGI script dynamic.cgi. Call an output template dynamicTemplate.html.
remember the details listed in the previous exercise to make the results work on localhost. After the server
is started and you have all the files, go to http://localhost:8080/dynamic.html.

The Summary Section 4.4 starts with the overall process for creating dynamic web pages.

4.3.5. More Advanced Examples. One of the advantages of having a program running on a public
server is that data may be stored centrally and augmented and shared by all. In high performance sites
data is typically stored in a sophisticated database, beyond the scope of this tutorial. For a less robust but
simpler way to store data persistently, we can use simple text files on the server.

The www example page namelist.html uses namelist.cgi to maintain a file namelist.txt of data submitted
by users of the page. You can test the program with your local Python server. It is less impressive when you
are the only one who can make changes! You may also try the copy on the public Loyola server, http://
cs.luc.edu/anh/python/hands-on/examples/www/namelist.html. The local source code is documented
for those who would like to have a look.

You also may want to look at the source code of the utility script you have been using, dumpcgi.cgi. It
uses a method of getting values from the CGI data that has not been discussed:

val = form.getlist(name)

This method returns a list of values associated with a name from the web form. The list many have, 0, 1,
or many elements. It is needed if you have a number of check boxes with the same name. (Maybe you want
a list of all the toppings someone selects for a pizza.)

Both dumpcgi.cgi and namelist.html add an extra layer of robustness in reflecting back arbitrary text
from a user. The user’s text may include symbols used specially in html like ’<’. The function safePlainText
replaces reserved symbols with appropriate alternatives.

The examples in earlier sections were designed to illustrate the flow of data from input form to output
page, but neither the html or the data transformations have been very complicated. A more elaborate
situation is ordering pizza online, and recording the orders for the restaurant owner. You can try http:
//localhost:8080/pizza1.cgi several times and look at the supporting example www files pizza1.cgi,
pizzaOrderTemplate1.html, and the simple pizzaReportTemplate.html. To see the report, the owner needs
to know the special name owner777. After ordering several pizzas, enter that name and press the Submit
button again.

This script gets used in two ways by a regular user: initially, when there is no order, and later to confirm
an order that has been submitted. The two situations use different logic, and the script must distinguish
what is the current use. A hidden variable is used to distinguish the two cases: when pizza1.cgi is called
directly (not from a form), there is no pastState field. On the other hand the pizzaOrderTemplate1.html
includes a hidden field named pastState, which is set to the value ’order’. (You can confirm this by examining
the end of the page in Kompozer’s source mode.) The script checks the value of the field pastState, and
varies its behavior based on whether the value is ’order’ or not.

The form in pizzaOrderTemplate1.html has radio buttons and check boxes hard coded into it for the
options, and copies of the data are in pizza1.cgi. Keeping multiple active copies of data is not a good idea:
They can get out of sync. If you look at the source code for pizzaOrderTemplate1.html, you see that all
the entries for the radio button and check box lines are in a similar form. In the better version with altered
files pizza.cgi and pizzaOrderTemplate.html (that appears the same to the user), the basic data for the pizza
options is only in one place in pizza.cgi, and the proper number of lines of radio buttons and check boxes
with the right data are generated dynamically.

A further possible elaboration would be to also allow the restaurant manager to edit the size, cost and
topping data online, and store the data in a file rather than having the data coded in pizza.cgi, so if the

4.4. SUMMARY 138

manager runs out of a topping, she can remove it from the order form. this change would be a fairly elaborate
project compared to the earlier exercises!

Final www examples are a pair of programs in real use in my courses. To illustrate, you can try the
sample survey, http://localhost:8080/pythonTutorialsurvey.html. Run it several times with different
responses. Forms can be set up like this one to link to the www example CGI script surveyFeedback.cgi,
which will save any number of responses to the survey. After getting responses you can start the Idle shortcut
in the www example directory and run the regular Python program, readFeedback.py, which is also in the
www example directory: At the prompt for a survey base name, enter exactly:

pythonTutorial
Then the program prints out all the survey feedback, grouped in two different ways. It documents the use of
a couple of modules not introduced in this tutorial, but the rest just uses ideas from the tutorial, including
considerable emphasis on dictionaries and string processing.

4.4. Summary

(1) The Overall Process for Creating Dynamic Web Pages
Making dynamic web pages has a number of steps. I have suggested several ways of decoupling
the parts, so you can alter the order, but if you are starting from nothing, you might follow the
following sequence:
(a) Determine the inputs you want to work with and make a web form that makes it easy and

obvious for the user to provide the data. You may initially want to have the form’s action
URL be dumpcgi.cgi, so you can debug the form separately. Test with the local server. When
everything seems OK, make sure to change the action URL to be the name of the CGI script
you are writing. [4.3.4]

(b) It is easier to debug a regular Python program totally inside Idle than to mix the Idle editor
and server execution. Particularly if the generation of output data is going to be complicated
or there are lots of places you are planning to insert data into an output template, I suggest
you write the processInput function with its output template first and test it without a
server, as we did with additionWeb.py, providing either canned input in the main program,
or taking input data from the keyboard with input, and saving the output page to a local file
that you examine in your webbrowser. [4.2.1]

(c) When you are confident about your processInput function, put it in a program with the
proper cgi skeleton, and add the necessary lines at the beginning of the main function to take
all the CGI script input from the browser data. [4.3.2.4]

(d) Finally test the whole thing with the local server.
(e) If you have an account on a public server, it should not take much more work than just

uploading your files to make your creation available to the whole world. You may have a
public server with a different configuration than the Loyola server. If so see this note:1

(2) Markup: Plain text may be marked up to include formatting. The formatting may be only easily
interpreted by a computer, or it may be more human readable. One form of human-readable
markup is hypertext markup language (HTML). [4.1.1]
(a) HTML markup involves tags enclosed in angle braces. Ending tags start with ’/’. For instance

<title>Computer Science</title>.
(i) Tags may be modified with attributes specified similar to Python string assignments,

for example the text input field tag,
<input value="red" name="color" type="radio">

(b) Modern editors allow HTML to be edited much like in a word processor. Two views of the
data are useful: the formatted view and the source view, showing the raw HTML markup.

1The tutorial assumed a server configured as follows: html pages and CGI scripts can all be in the same directory, and
the CGI scripts end with .cgi. This is the convention on Loyola’s Computer Science public student server. Another common
configuration is that scripts all go in a cgi-bin directory, where they just have the normal .py suffix. If you have a server with
the latter configuration, your action URLs will be of the form cgi-bin/someScript.py. Depending on the server configuration the
current directory may or may not be cgi-bin while the script executes. That may mean you need a path before the file names
for your output templates, or your need to be careful what directory referenced files end up in. If you are making arrangements
for your own site on a public server, be sure to check with your system administartor to find out what the conventions are.

4.4. SUMMARY 139

(3) Python and HTML: Since HTML is just a text string, it can easily be manipulated in Python, and
read and written to text files. [4.2.1]

(4) The webbrowser module has a function open, that will open a file or web URL in the default
browser: [4.2.1]
webbrowser.open(filename)

(5) Common Gateway Interface (CGI). The sequence of events for generating a dynamic web page via
CGI: [4.3.1]
(a) The data a user types is handled directly by the browser. It recognizes forms.
(b) The user presses a Submit button. An action is stored in the form saying what to do when

the button is pressed.
(c) In the cases we consider in this tutorial, the action is given as a web resource, giving the

location of a CGI script on some server. The browser sends the data that you entered to that
web location.

(d) The server recognizes the page as an executable script, sees that it is a Python program, and
executes it, using the data sent along from the browser form as input.

(e) The script runs, manipulates the input data into some results, and puts those results into the
text of a web page that is the output of the program.

(f) The server captures this output from the program and send it back to the user’s browser as a
new page to display.

(g) The results appear in the user’s browser.
(6) The cgi Module

(a) Create the object to process CGI input with [4.3.2.4]
form = cgi.FieldStorage()

(b) Extract the first value specified by the browser with name nameAttrib, or use default if no
such value exists [4.3.2.4]
variable = form.getfirst(nameAttrib, default)

(c) Extract the list of all values specified by the browser associated with name, nameAttrib
[4.3.5]
listVariable = form.getlist(nameAttrib)
This case occurs if you have a number of checkboxes, all with the same name, but different
values.

(7) Local Python Servers.
(a) Python has modules for creating local testing servers that can handle static web pages and

Python CGI scripts.[4.3.1]
(b) Different kinds of errors with CGI scripts are handled different ways by a local Python server.

[4.3.3]
(8) A comparison of the various types of files used in web programming, listing the different ways to

edit and use the files, is given in Section 4.1.3.

